Bovine oocytes that stain with brilliant cresyl blue (BCB) have a relatively higher developmental competence. The aim of the present study was to investigate the relationships among BCB staining, lipid content, and active mitochondria. Bovine oocytes (N = 133) with at least three layers of cumulus cells were segregated as BCB retained (BCB+) or metabolized (BCB-) and then stained for active mitochondria (Mitotracker Red) and lipid (Bodipy), with analysis by confocal microscopy.
View Article and Find Full Text PDFHumans, and many non-human animals, produce and respond to harsh, unpredictable, nonlinear sounds when alarmed, possibly because these are produced when acoustic production systems (vocal cords and syrinxes) are overblown in stressful, dangerous situations. Humans can simulate nonlinearities in music and soundtracks through the use of technological manipulations. Recent work found that film soundtracks from different genres differentially contain such sounds.
View Article and Find Full Text PDFManipulation of mammalian embryos and gametes in vitro reduces viability. Specific causes for these reductions are still largely undetermined. Accumulating evidence suggests that survival rates and developmental competency may be reduced following disruptions in the epigenetic regulation of gene expression.
View Article and Find Full Text PDFThe histone code is an epigenetic regulatory system thought to play a crucial role in cellular events such as development, differentiation and in the maintenance of pluripotency. In order to gain an insight into the role variant histones may play during mammalian development; we studied gene expression of histone variants and remodelling enzymes in mouse embryonic stem (ES) cells and during mouse preimplantation development. Using quantitative reverse-transcription PCR (qRT-PCR) we document the gene expression pattern of 12 histone variants and 2 of their associated remodelling enzymes in undifferentiated ES cells and during preimplantation embryo development.
View Article and Find Full Text PDFA variety of vertebrates produce nonlinear vocalizations when they are under duress. By their very nature, vocalizations containing nonlinearities may sound harsh and are somewhat unpredictable; observations that are consistent with them being particularly evocative to those hearing them. We tested the hypothesis that humans capitalize on this seemingly widespread vertebrate response by creating nonlinear analogues in film soundtracks to evoke particular emotions.
View Article and Find Full Text PDFEx vivo two-cell mouse embryos deprived of glucose in vitro can develop to blastocysts by increasing their pyruvate consumption; however, zygotes when glucose-deprived cannot adapt this metabolic profile and degenerate as morulae. Prior to their death, these glucose-deprived morulae exhibit upregulation of the H+-monocarboxylate co-transporter SLC16A7 and catalase, which partly co-localize in peroxisomes. SLC16A7 has been linked to redox shuttling for peroxisomal beta-oxidation.
View Article and Find Full Text PDFConcurrent with compaction, preimplantation mouse embryos switch from the high pyruvate consumption that prevailed during cleavage stages to glucose consumption against a constant background of pyruvate uptake. However, zygotes exposed to and subsequently deprived of glucose can form blastocysts by increasing pyruvate uptake. This metabolic switch requires cleavage-stage exposure to glucose and is one aspect of metabolic differentiation that normally occurs in vivo.
View Article and Find Full Text PDFAlthough mouse oocytes and cleavage-stage embryos are unable to utilize glucose as a metabolic fuel, they have a specific requirement for a short exposure to glucose prior to compaction. The reason for this requirement has been unclear. In this study we confirm that cleavage-stage exposure to glucose is required for blastocyst formation and show that the absence of glucose between 18-64 h after hCG causes an irreversible decrease in cellular proliferation and an increase in apoptosis.
View Article and Find Full Text PDFAlthough IGF-I and insulin are important modulators of preimplantation embryonic physiology, the signalling pathways activated during development remain to be elucidated. As a model of preimplantation embryos, pluripotent mouse embryonic stem cells were used to investigate which receptor mediated actions of physiological concentrations of IGF-I and insulin on growth measured by protein synthesis. Exposure of mouse embryonic stem (ES) cells to 1.
View Article and Find Full Text PDFCleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. In the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins.
View Article and Find Full Text PDFThe addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos.
View Article and Find Full Text PDFIn this study we report the cloning and characterisation of the mouse Glut12 gene and examine for the first time its expression pattern in the earliest stages of development. Mouse Glut12 (mGlut12) was cloned from preimplantation embryos by 5'RACE RT-PCR using primers designed from an EST clone corresponding to a human GLUT12 antigenic sequence after positive immunoreactivity was observed in mouse two-cell embryos by western immunoblotting. The mGlut12 gene contains an open reading frame of 1869 base pairs, potentially encoding a polypeptide of 622 amino acids.
View Article and Find Full Text PDF