Atherosclerotic plaque rupture leading to myocardial infarction is a major global health burden. Applying the tandem stenosis (TS) mouse model, which distinctively exhibits the characteristics of human plaque instability/rupture, we use quantitative proteomics to understand and directly compare unstable and stable atherosclerosis. Our data highlight the disparate natures and define unique protein signatures of unstable and stable atherosclerosis.
View Article and Find Full Text PDFColchicine is a broad-acting anti-inflammatory agent that has attracted interest for repurposing in atherosclerotic cardiovascular disease. Here, we studied its ability at a human equivalent dose of 0.5 mg/day to modify plaque formation and composition in murine atherosclerosis and investigated its actions on macrophage responses to atherogenic stimuli in vitro.
View Article and Find Full Text PDFAims: Cardiac fibrosis is central to heart failure (HF), especially HF with preserved ejection fraction (HFpEF), often caused by hypertension. Despite fibrosis causing diastolic dysfunction and impaired electrical conduction, responsible for arrhythmia-induced sudden cardiac death, the mechanisms are poorly defined and effective therapies are lacking. Here we show that crosstalk between cardiac cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is essential for development of non-ischemic hypertensive cardiac fibrosis.
View Article and Find Full Text PDFBackground: 3F7 is a monoclonal antibody targeting the enzymatic pocket of activated factor XII (FXIIa), thereby inhibiting its catalytic activity. Given the emerging role of FXIIa in promoting thromboinflammation, along with its apparent redundancy for hemostasis, the selective inhibition of FXIIa represents a novel and highly attractive approach targeting pathogenic processes that cause thromboinflammation-driven cardiovascular diseases.
Methods: The effects of FXIIa inhibition were investigated using three distinct mouse models of cardiovascular disease-angiotensin II-induced abdominal aortic aneurysm (AAA), an ApoE model of atherosclerosis, and a tandem stenosis model of atherosclerotic plaque instability.
Aims: Myocardial infarction (MI) accelerates atherosclerosis and greatly increases the risk of recurrent cardiovascular events for many years, in particular, strokes and MIs. Because B cell-derived autoantibodies produced in response to MI also persist for years, we investigated the role of B cells in adaptive immune responses to MI.
Methods And Results: We used an apolipoprotein-E-deficient (ApoE-/-) mouse model of MI-accelerated atherosclerosis to assess the importance of B cells.
Interaction between B and CD4 T cells is crucial for their optimal responses in adaptive immunity. Immune responses augmented by their partnership promote chronic inflammation. Here we report that interaction between B and CD4 T cells augments their atherogenicity to promote lipid-induced atherosclerosis.
View Article and Find Full Text PDFObjective: B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte-induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice.
Approach And Results: Using mixed chimeric mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells.
Background: We previously identified peritoneal B1a cells that secrete natural IgM as a key atheroprotective B cell subset. However, the molecules that activate atheroprotective B1a cells are unknown. Here, we investigated whether Toll-like receptors (TLRs) TLR2, TLR4, and TLR9 expressed by B1a cells are required for IgM-mediated atheroprotection.
View Article and Find Full Text PDFA reliable method for the diagnosis of minimal cardiac ischemia would meet a strong demand for the sensitive diagnosis of coronary artery disease in cardiac stress testing and risk stratification in patients with chest pain but unremarkable ECGs and biomarkers. We hypothesized that platelets accumulate early on in ischemic myocardium and a newly developed technology of non-invasive molecular PET imaging of activated platelets can thus detect minimal degrees of myocardial ischemia. To induce different degrees of minimal cardiac ischemia, the left anterior descending artery (LAD) was ligated for 10, 20 or 60 min.
View Article and Find Full Text PDFAims: B2 lymphocytes promote atherosclerosis development but their mechanisms of action are unknown. Here, we investigated the role of tumour necrosis factor alpha (TNF-α) produced by B2 cells in atherogenesis.
Methods And Results: We found that 50% of TNF-α-producing spleen lymphocytes were B2 cells and ∼20% of spleen and aortic B cells produced TNF-α in hyperlipidemic ApoE(-/-) mice.
Aims: Atherosclerosis-related deaths from heart attacks and strokes remain leading causes of global mortality, despite the use of lipid-lowering statins. Thus, there is an urgent need to develop additional therapies.
Methods And Results: Reports that NKT cells promote atherosclerosis and an NKT cell CD1d-dependent lipid antagonist (DPPE-PEG350, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N[methoxy(polyethyleneglycol)-350]) reduces allergen-induced inflammation led us to investigate its therapeutic potential in preventing the development and progression of experimental atherosclerosis.
Aims: To investigate whether activation of atheroprotective peritoneal B1a cells by apoptotic cells or phosphatidylserine liposomes (PSLs) can enhance their protective actions during atherosclerosis development.
Methods And Results: Male apolipoprotein E-knockout (ApoE-/-) mice were treated with apoptotic cells or PSLs at the beginning of 8-week high-fat diet. Intraperitoneally administered apoptotic cells attenuated atherosclerosis in hypercholesterolemic ApoE-/- mice by 53% and macrophage accumulation by 52%, effects mimicked by administering PSLs and abolished by B1a cell depletion by splenectomy.
Rationale: CD4(+) natural killer T (NKT) cells augment atherosclerosis in apolipoprotein E-deficient (ApoE)(-/-) mice but their mechanisms of action are unknown.
Objectives: We investigated the roles of bystander T, B, and NK cells; NKT cell-derived interferon-γ, interleukin (IL)-4, and IL-21 cytokines; and NKT cell-derived perforin and granzyme B cytotoxins in promoting CD4(+) NKT cell atherogenicity.
Methods And Results: Transfer of CD4(+) NKT cells into T- and B-cell-deficient ApoE(-/-)Rag2(-/-) mice augmented aortic root atherosclerosis by ≈75% that was ≈30% of lesions in ApoE(-/-) mice; macrophage accumulation similarly increased.
Soluble P-selectin (sP-selectin), a biomarker of inflammatory related pathologies including cardiovascular and peripheral vascular diseases, also has pro-atherosclerotic effects including the ability to increase leukocyte recruitment and modulate thrombotic responses in vivo. The current study explores its role in progressing atherosclerotic plaque disease. Apoe-/- mice placed on a high fat diet (HFD) were given daily injections of recombinant dimeric murine P-selectin (22.
View Article and Find Full Text PDFRAGE (receptor for advanced glycation end-products) is expressed on multiple cell types implicated in the progression of atherosclerosis and plays a role in DAA (diabetes-associated atherosclerosis). The aim of the present study was to determine the relative role of either BM (bone marrow)- or non-BM-derived RAGE in the pathogenesis of STZ (streptozotocin)-induced DAA. Male ApoE (apolipoprotein E)-null (ApoE-/-:RAGE+/+) and ApoE:RAGE-null (ApoE-/-:RAGE-/-) mice at 7 weeks of age were rendered diabetic with STZ.
View Article and Find Full Text PDFMyocardial infarction (MI) provokes regional inflammation which facilitates the healing, whereas excessive inflammation leads to adverse cardiac remodelling. Our aim was to determine the role of macrophage migration inhibitory factor (MIF) in inflammation and cardiac remodelling following MI. Wild type (WT) or global MIF deficient (MIFKO) mice were subjected to coronary artery occlusion.
View Article and Find Full Text PDFAim: Although natural killer (NK) cells, a key component of the innate immune system, have been identified in human and mouse atherosclerotic lesions, their role in atherosclerosis development remains unclear. To determine their role in atherosclerosis, we used both loss- and gain-of-function experiments in ApoE(-/-) mice fed a high-fat diet.
Methods And Results: Treatment of ApoE(-/-) mice with anti-Asialo-GM1 antibodies depleted NK cells without affecting other lymphocytes, including natural killer T cells, and greatly attenuated atherosclerosis.
Aims: Option to attenuate atherosclerosis by depleting B2 cells is currently limited to anti-CD20 antibodies which deplete all B-cell subtypes. In the present study we evaluated the capacity of a monoclonal antibody to B cell activating factor-receptor (BAFFR) to selectively deplete atherogenic B2 cells to prevent both development and progression of atherosclerosis in the ApoE(-/-) mouse.
Methods And Results: To determine whether the BAFFR antibody prevents atherosclerosis development, we treated ApoE(-/-) mice with the antibody while feeding them a high fat diet (HFD) for 8 weeks.
Background: Heart attacks and strokes, leading causes of deaths globally, arise from thrombotic occlusion of ruptured vulnerable atherosclerotic plaques characterized by abundant apoptosis, large necrotic cores derived from inefficient apoptotic cell clearance, thin fibrous caps, and focal inflammation. The genesis of apoptosis and necrotic cores in these vulnerable atherosclerotic plaques remains unknown. Cytotoxic CD8(+) T lymphocytes represent up to 50% of leukocytes in advanced human plaques and dominate early immune responses in mouse lesions, yet their role in atherosclerosis also remains unresolved.
View Article and Find Full Text PDFBackground: CD4+CD25+Foxp3+ regulatory T cells (Tregs) attenuate atherosclerosis, but their therapeutic application by adoptive transfer is limited by the need for their expansion in vitro and limited purity. Recently, an interleukin (IL)-2/anti-IL-2 neutralizing monoclonal antibody (IL-2/anti-IL-2 mAb) complex has been shown to expand these Tregs. We examined the capacity of a modified IL-2/anti-IL-2 mAb treatment to expand Tregs and inhibit both the progression and development of developed atherosclerosis.
View Article and Find Full Text PDFAims: The mechanisms underlying cardiac fibrosis in hypertension are yet to be defined, although inflammatory cells, fibroblasts, and cytokines have been implicated. Here, we investigated the role of interleukin-4 (IL-4) in cardiac fibrosis, which is elevated in the hypertensive heart. IL-4 has been shown to be pro-fibrotic in the liver and the lung, but its role in cardiac fibrosis has not been investigated.
View Article and Find Full Text PDFWe have recently identified conventional B2 cells as atherogenic and B1a cells as atheroprotective in hypercholesterolemic ApoE(-/-) mice. Here, we examined the development of atherosclerosis in BAFF-R deficient ApoE(-/-) mice because B2 cells but not B1a cells are selectively depleted in BAFF-R deficient mice. We fed BAFF-R(-/-) ApoE(-/-) (BaffR.
View Article and Find Full Text PDFNanoparticles are being developed for diverse biomedical applications, but there is concern about their potential to promote inflammation, particularly in the lung. Although a variety of ambient, anthropogenic and man-made nanoparticles can promote lung inflammation, little is known about the long-term immunomodulatory effects of inert noninflammatory nanoparticles. We previously showed polystyrene 50-nm nanoparticles coated with the neutral amino acid glycine (PS50G nanoparticles) are not inflammatory and are taken up preferentially by dendritic cells (DCs) in the periphery.
View Article and Find Full Text PDF