The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood.
View Article and Find Full Text PDFGlucagon-like peptide 1 (GLP-1) analogs are increasingly being used in the treatment of type 2 diabetes. It is clear that these drugs lower blood glucose through an increase in insulin secretion and a lowering of glucagon secretion; in addition, they lower body weight and systolic blood pressure and increase heart rate. Using a new monoclonal antibody for immunohistochemistry, we detected GLP-1 receptor (GLP-1R) in important target organs in humans and monkeys.
View Article and Find Full Text PDFBackground: Insertion of an insulin catheter for continuous subcutaneous insulin infusion into the subcutaneous adipose tissue (SAT) causes a tissue trauma that may have consequences for insulin absorption. We evaluated the importance of insulin catheter wear-time on subcutaneous adipose tissue blood flow (ATBF) and absorption of the rapid-acting insulin analog insulin aspart over a period of 4 days.
Methods: Teflon insulin catheters (Medtronic, Minneapolis, MN) were inserted into the abdominal SAT of 10 healthy men without diabetes (mean +/- SEM age, 23.
Background: Subcutaneous tissue is an important target for drug deposition or infusion. A local trauma may induce alterations in local microcirculation and diffusion barriers with consequences for drug bioavailability. We examined the influence of infusion catheters' wear time on local microcirculation and infusion counter pressure.
View Article and Find Full Text PDFIntroduction: Subcutaneous adipose tissue (SAT) is increasingly being recognized as a highly active tissue secreting adipokines involved in many physiological and pathophysiological processes. Microdialysis is a technique used for in vivo sampling of interstitial fluid from e.g.
View Article and Find Full Text PDFBackground: Continuous glucose measurements provide improved glycemic control and may prevent hypoglycemia and long-term complications of diabetes. One of the most promising techniques is the short-term implantation of electrochemical glucose sensors in subcutis. However, the inflammatory reaction to these sensors may lead to bioinstability of sensor measurements.
View Article and Find Full Text PDF