Publications by authors named "Peter K M Kim"

Cyclic AMP (cAMP) and cyclic GMP (cGMP) suppress apoptosis in many cell types, including hepatocytes. We have previously shown that membrane-permeable cAMP and cGMP analogs attenuate tumor necrosis factor alpha plus actinomycin D (TNFalpha/ActD)-induced apoptosis in hepatocytes at a step upstream of caspase activation and cytochrome c release. Recently we have also shown that FADD levels increase 10 folds in response to TNFalpha/ActD.

View Article and Find Full Text PDF

Nitrosative stress can prevent or induce apoptosis. It occurs via S-nitrosylation by the interaction of nitric oxide (NO) with the biological thiols of proteins. Cellular redox potential and non-heme iron content determine S-nitrosylation.

View Article and Find Full Text PDF

Nitric oxide (NO*) and its reaction products are key players in the physiology and pathophysiology of inflammatory settings such as sepsis and shock. The consequences of the expression of inducible NO* synthase (iNOS, NOS-2) can be either protective or damaging to the liver. We have delineated two distinct hepatoprotective actions of NO*: the stimulation of cyclic guanosine monophosphate and the inhibition of caspases by S-nitrosation.

View Article and Find Full Text PDF

Stem cell therapy holds great promise for the replacement of damaged or dysfunctional myocardium. Nitric oxide (NO) has been shown to promote embryonic stem (ES) cell differentiation in other systems. We hypothesized that NO, through NO synthase gene transfer or exogenous NO exposure, would promote the differentiation of mouse ES cells into cardiomyocytes (CM).

View Article and Find Full Text PDF

A properly functioning immune system is dependent on programmed cell death/apoptosis at virtually every stage of lymphocyte development and activity. Carbon monoxide (CO), an enzymatic product of heme oxyenase-1, has been shown to possess anti-apoptotic effects in a number of different model systems. The purpose of the present study was to expand on this knowledge to determine the role of CO in the well established model of Fas/CD95-induced apoptosis in Jurkat cells, and to determine the mechanism by which CO can modulate T-cell apoptosis.

View Article and Find Full Text PDF

Farnesylation of p21(ras) is an important step in the intracellular signaling pathway of growth factors, hormones, and immune stimulants. We synthesized a potent and selective farnesyltransferase inhibitor (LB42708) with IC(50) values of 0.8 nM in vitro and 8 nM in cultured cells against p21(ras) farnesylation and examined the effects of this inhibitor in the settings of inflammation and arthritis.

View Article and Find Full Text PDF

Like many juggernauts in biology, the elusive nature of nitric oxide (NO) sprints through the fields, sometimes the savior, at other times the scimitar. In the liver, which is the metabolic center of the organism, hepatocytes and immune cells trade blows using the reactive diatomic molecule NO to induce cellular damage under toxic conditions. In response, hepatocytes can utilize several mechanisms of NO to their protective advantage by prohibiting the activation of programmed cell death, a.

View Article and Find Full Text PDF

Interferon regulatory factor-1 (IRF-1) is a nuclear transcription factor that mediates interferon and other cytokine effects and appears to have antitumor activity in vitro and in vivo in cancer cells. We have constructed a recombinant adenoviral vector (Ad-IRF-1) that infects mammary cells with high efficiency and results in high levels of functional IRF-1 protein in transfected cells. Overexpression of IRF-1 in two mouse breast cancer cell lines, C3-L5 and TS/A, resulted in apoptosis in these cell lines as assessed by Annexin V staining.

View Article and Find Full Text PDF

Carbon monoxide (CO) and nitric oxide (NO) each have mechanistically unique roles in various inflammatory disorders. Although it is known that CO can induce production of NO and that NO can induce expression of the cytoprotective enzyme heme oxygenase 1 (HO-1), there is no information whether the protective effect of CO ever requires NO production or whether either gas must induce expression of HO-1 to exert its functional effects. Using in vitro and in vivo models of tumor necrosis factor alpha-induced hepatocyte cell death in mice, we find that activation of nuclear factor kappaB and increased expression of inducible NO are required for the protective effects of CO, whereas the protective effects of NO require up-regulation of HO-1 expression.

View Article and Find Full Text PDF

Purpose: Vascular injury and inflammation are associated with elaboration of a number of cytokines that signal through multiple pathways to act as smooth muscle cell (SMC) mitogens. Activation of the nuclear factor-kappa B (NF-kappaB) transcription factor is essential for SMC proliferation in vitro and is activated by vascular injury in vivo. Activation of NF-kappaB is controlled by several upstream regulators, including the inhibitors of kappa B (IkappaB).

View Article and Find Full Text PDF

Objectives: Non-small cell lung cancers commonly develop resistance to radiation and chemotherapy, and they often present at stages beyond surgical resectability. Because current treatment modalities are inadequate, novel therapies are necessary to reduce the effects of the increasing incidence in pulmonary neoplasms. Fas-associating death domain protein is a central mediator of death receptor-initiated apoptosis that directly activates the caspase-8 protease.

View Article and Find Full Text PDF

Nitric oxide (NO) functions not only as an important signaling molecule in the brain by producing cGMP, but also regulates neuronal cell apoptosis. The mechanism by which NO regulates apoptosis is unclear. In this study, we demonstrated that NO, produced either from the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) or by transfection of neuronal NO synthase, suppressed 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells by inhibiting mitochondrial cytochrome c release, caspase-3 and -9 activation, and DNA fragmentation.

View Article and Find Full Text PDF

Ultraviolet irradiation (UV) can induce keratinocyte apoptosis by activating death receptors that recruit the intracellular adaptor molecule FADD/MORT1 (Fas-associating death domain protein/mediator of receptor-induced toxicity). We hypothesized that UV could alter FADD expression levels to augment UV-induced keratinocyte apoptosis. In a dose-dependent manner UV B irradiation increased the expression of FADD protein in a human keratinocyte cell line (CCD-1106) with a corresponding increase in caspase-8 cleavage and cellular apoptosis.

View Article and Find Full Text PDF

Nitric oxide (NO) can modulate numerous genes directly; however, some genes may be modulated only in the presence of the inflammatory stimuli that increase the expression of the inducible nitric oxide synthase (iNOS). One method by which to examine changes in NO-mediated gene expression is to carry out a gene array analysis on NO-nai;ve cells. Herein, we report a gene array analysis on mRNA from iNOS-null (iNOS(-/-)) mouse hepatocytes harvested from mice exposed to NO by infection with an adenovirus expressing human iNOS (Ad-iNOS).

View Article and Find Full Text PDF
Article Synopsis
  • Nitric oxide (NO) plays a crucial role in regulating various enzymes and gene expression, particularly in liver cells (hepatocytes).
  • The study investigated how pretreatment with an NO donor (SNAP) affects NO production in response to cytokines like interleukin-1beta and interferon-gamma in these liver cells, revealing that it significantly increased NO output without altering iNOS gene expression.
  • The mechanism involves elevated levels of a crucial cofactor (BH(4)) and enhanced iNOS dimerization, facilitated by the suppression of a regulatory protein (GFRP) and activation of an enzyme (GTPCHI).
View Article and Find Full Text PDF

We examined the regulation of Fas-associating death domain (FADD) protein as an important adaptor molecule in apoptosis signaling and hypothesized that the regulation of FADD could contribute to hepatocyte death. FADD/mediator of receptor-induced toxicity (MORT1) is required for activation of several signaling pathways of cell death. In this study we report the interesting and unexpected result that actinomycin D increased the expression of FADD protein, and we demonstrate that other cellular stresses like ultraviolet irradiation or heat shock could also increase FADD levels in hepatocytes.

View Article and Find Full Text PDF

Nitric oxide (NO) exerts numerous antiapoptotic effects on hepatocytes in settings of inflammation and tissue damage. These actions of NO are modulated by a variety of mechanisms under both physiologic and pathologic conditions. Nitric oxide inhibits cell death or apoptosis by modulation of heat shock proteins, S-nitrosylation of caspases at their catalytic site cysteine residue, triggering of the cGMP pathway, and prevention of mitochondrial dysfunction.

View Article and Find Full Text PDF

Nitric oxide can prevent or induce apoptosis depending on its concentration, cell type, and the oxidative milieu. Nitric oxide inhibits apoptosis and inflammation by S-nitrosylation of the active site cysteine of caspases, the central effector molecules of cell death as well as maturation of IL-1beta and IL-18. The ability of nitric oxide to S-nitrosylate caspases depends on multiple factors including the presence of free iron and intracellular redox potential.

View Article and Find Full Text PDF