Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of nitrogen (N) fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application.
View Article and Find Full Text PDFPlastoglobule lipid droplets are a dynamic sub-compartment of plant chloroplasts and cyanobacteria. Found ubiquitously among photosynthetic species, they are believed to serve a central role in the adaptation and remodeling of the thylakoid membrane under rapidly changing environmental conditions. The capacity to isolate plastoglobules of high purity has greatly facilitated their study through proteomic, lipidomic, and other methodologies.
View Article and Find Full Text PDFTo cope with environmental stresses and ensure maximal reproductive success, plants have developed strategies to adjust the timing of their transition to reproductive growth. This has a substantial impact on the stress resilience of crops and ultimately on agricultural productivity. Here, we report a previously uncharacterized, plant-specific gene family designated as Regulator of Flowering and Stress (RFS).
View Article and Find Full Text PDFWe present a large-scale top-down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size-exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post-translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post-translational modifications that impact the charge state such as acetylation and phosphorylation.
View Article and Find Full Text PDFMethods Enzymol
July 2022
Carotenoids represent a set of pigmented lipids with notable significance to photosynthetic capacity and human health. Their importance has resulted in broad interest in employing metabolic engineering of carotenoid metabolism for enhanced nutritional value and stress resilience of crops. While the enzymatic steps of carotenoid biosynthesis are well defined, the regulation of the reactions for optimized pathway flux remains largely unclear.
View Article and Find Full Text PDFPlants are increasingly becoming an option for sustainable bioproduction of chemicals and complex molecules like terpenoids. The triterpene squalene has a variety of biotechnological uses and is the precursor to a diverse array of triterpenoids, but we currently lack a sustainable strategy to produce large quantities for industrial applications. Here, we further establish engineered plants as a platform for production of squalene through pathway re-targeting and membrane scaffolding.
View Article and Find Full Text PDFThe Absence of bc Complex (ABC1) is an ancient, atypical protein kinase family that emerged prior to the archaeal-eubacterial divergence. Loss-of-function mutants in ABC1 genes are linked to respiratory defects in microbes and humans and to compromised photosynthetic performance and stress tolerance in plants. However, demonstration of protein kinase activity remains elusive, hampering their study.
View Article and Find Full Text PDFPlant chloroplasts harbor ubiquitous lipid droplets called plastoglobules. While physically connected to the thylakoid membrane, they are characterized by a unique set of about 30 proteins specifically associated with the plastoglobule. How these proteins selectively target the plastoglobule remains unknown.
View Article and Find Full Text PDFPlants require rapid responses to adapt to environmental stresses. This includes dramatic changes in the size and number of plastoglobule lipid droplets within chloroplasts. Although the morphological changes of plastoglobules are well documented, little is known about the corresponding molecular changes.
View Article and Find Full Text PDFIntracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes.
View Article and Find Full Text PDFA growing number of small secreted peptides (SSPs) in plants are recognized as important regulatory molecules with roles in processes such as growth, development, reproduction, stress tolerance, and pathogen defense. Recent discoveries further implicate SSPs in regulating root nodule development, which is of particular significance for legumes. SSP-coding genes are frequently overlooked, because genome annotation pipelines generally ignore small open reading frames, which are those most likely to encode SSPs.
View Article and Find Full Text PDFCurr Protoc Plant Biol
September 2019
Hundreds to thousands of small secreted peptides (SSPs) are encoded in plant genomes but have been overlooked, and most remain unannotated and unstudied. Despite their low profile, they have been found to confer dramatic effects on growth and development of plants. With the growing appreciation of their significance, the development of appropriate methods to identify and functionally assess the myriad SSPs encoded in plant genomes has become critical.
View Article and Find Full Text PDFGrowing evidence indicates that small, secreted peptides (SSPs) play critical roles in legume growth and development, yet the annotation of SSP-coding genes is far from complete. Systematic reannotation of the genome identified 1,970 homologs of established SSP gene families and an additional 2,455 genes that are potentially novel SSPs, previously unreported in the literature. The expression patterns of known and putative SSP genes based on 144 RNA sequencing data sets covering various stages of macronutrient deficiencies and symbiotic interactions with rhizobia and mycorrhiza were investigated.
View Article and Find Full Text PDFBlue native-PAGE (BN-PAGE) resolves protein complexes in their native state. When combined with immunoblotting, it can be used to identify the presence of high molecular weight complexes at high resolution for any protein, given a suitable antibody. To identify proteins in high molecular weight complexes on a large scale and to bypass the requirement for specific antibodies, we applied a tandem mass spectrometry (MS/MS) approach to BN-PAGE-resolved chloroplasts.
View Article and Find Full Text PDFThe development of a plant leaf is a meticulously orchestrated sequence of events producing a complex organ comprising diverse cell types. The reticulate class of leaf variegation mutants displays contrasting pigmentation between veins and interveinal regions due to specific aberrations in the development of mesophyll cells. Thus, the reticulate mutants offer a potent tool to investigate cell-type-specific developmental processes.
View Article and Find Full Text PDFPlastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex.
View Article and Find Full Text PDFTrends Plant Sci
September 2012
Surprisingly few protein kinases have been demonstrated in chloroplasts or mitochondria. Here, we discuss the activity of bc(1) complex kinase (ABC1K) protein family, which we suggest locate in mitochondria and plastids, thus filling the kinase void. The ABC1Ks are atypical protein kinases and their ancestral function is the regulation of quinone synthesis.
View Article and Find Full Text PDFPlastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies.
View Article and Find Full Text PDF