Ni-based electrocatalysts have been predicted as highly potential candidates for hydrogen evolution reaction (HER); however, their applicability is hindered by an unfavorable d-band energy level (). Moreover, precise d-band structural engineering of Ni-based materials is deterred by appropriative synthesis methods and experimental characterization. Herein, we meticulously synthesize a special single-iodine-atom structure (I-Ni@C) and characterize the manipulation via resonant inelastic X-ray scattering (RIXS) spectroscopy to fill this gap.
View Article and Find Full Text PDFParasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation.
View Article and Find Full Text PDFProfiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations.
View Article and Find Full Text PDFAqueous zinc ion batteries (AZIBs) show great potential in large-scale energy storage systems. However, the inferior cycling life due to water-induced parasitic reactions and uncontrollable dendrites growth impede their application. Electrolyte optimization via the use of additives is a promising strategy to enhance the stability of AZIBs.
View Article and Find Full Text PDF