Publications by authors named "Peter Josef Hofmann"

Aminoglycosides (AG) are oligosaccharide antibiotics that interfere with the small ribosomal subunit in aerobic, Gram-negative bacteria, causing pathogen-destructing error rates in their protein biosynthesis. Aminoglycosides also induce mRNA misinterpretation in eukaryotic cells, especially of the UGA (Opal)-stop codon, albeit to a lower extent. UGA recoding is essentially required for the incorporation of selenocysteine (Sec) into growing selenoproteins during translation.

View Article and Find Full Text PDF

Background: Selenium (Se) is of importance for regular functioning of the immune system and thyroid gland, and may have a health effect in mild Graves' ophthalmopathy (GO).

Objective: As the Se status declines in inflammation, we analyzed whether GO activity or severity affects the Se status of patients.

Methods: Serum Se and selenoprotein P (SePP) concentrations were retrospectively determined in 84 consecutive GO patients before treatment and compared to their clinical activity score (CAS) and severity of eye changes (NOSPECS) status, and to the concentrations of autoantibodies targeting the TSH receptor (TRAK) or the IGF1 receptor (IGF1R-aAB).

View Article and Find Full Text PDF

TRα1 (thyroid hormone receptor α1) is well recognized for its importance in brain development. However, due to the difficulties in predicting TREs (thyroid hormone response elements) in silico and the lack of suitable antibodies against TRα1 for ChIP (chromatin immunoprecipitation), only a few direct TRα1 target genes have been identified in the brain. Here we demonstrate that mice expressing a TRα1-GFP (green fluorescent protein) fusion protein from the endogenous TRα locus provide a valuable animal model to identify TRα1 target genes.

View Article and Find Full Text PDF

The essential micronutrient selenium (Se) exerts its biological effects mainly through selenoproteins thereby affecting a number of physiological pathways including intracellular redox control, stress response and cancer cell proliferation. Besides affecting selenoprotein expression, some selenocompounds have been synthesized and analyzed in order to serve as chemotherapeutic substances preferentially targeting cancer cells. This promising chemotherapeutic potential has recently been verified for a particular imidoselenocarbamate in a mouse tumor model.

View Article and Find Full Text PDF

Thyroid hormones regulate critical developmental processes and key metabolic pathways. A number of natural and synthetic substances have been identified which adversely interfere with the endocrine system. These so-called endocrine disrupters (ED) have mainly been studied for their impact on the gonadal hormone axis.

View Article and Find Full Text PDF