Publications by authors named "Peter Jeszenszki"

This work is concerned with two-spin-1/2-fermion relativistic quantum mechanics, and it is about the construction of one-particle projectors using an inherently two-particle, "explicitly correlated" basis representation necessary for good numerical convergence of the interaction energy. It is demonstrated that a faithful representation of the one-particle operators, which appear in intermediate but essential computational steps, can be constructed over a many-particle basis set by accounting for the full Hilbert space beyond the physically relevant antisymmetric subspace. Applications of this development can be foreseen for the computation of quantum-electrodynamics corrections for a correlated relativistic reference state and high-precision relativistic computations of medium-to-high- helium-like systems, for which other two-particle projection techniques are unreliable.

View Article and Find Full Text PDF

Interactions in atomic and molecular systems are dominated by electromagnetic forces and the theoretical framework must be in the quantum regime. The physical theory for the combination of quantum mechanics and electromagnetism, quantum electrodynamics has been "established" by the mid-twentieth century, primarily as a scattering theory. To describe atoms and molecules, it is important to consider bound states.

View Article and Find Full Text PDF

The triplet contribution is computed to the 1 and 2 S0e1 states of the He atom, to the 1S0e1 state of the Li and Be ions, and to the XΣ ground state of the H molecule by extensive use of double-group symmetry (equivalent to LS coupling for the atomic systems) during the course of the variational solution of the no-pair Dirac-Coulomb-Breit (DCB) wave equation. The no-pair DCB energies are converged within sub-parts-per-billion relative precision, using an explicitly correlated Gaussian basis optimized to the non-relativistic energies. The α fine-structure constant dependence of the triplet sector contribution to the variational energy is αE at leading order, in agreement with the formal perturbation theory result available from the literature.

View Article and Find Full Text PDF

Variational and perturbative relativistic energies are computed and compared for two-electron atoms and molecules with low nuclear charge numbers. In general, good agreement of the two approaches is observed. Remaining deviations can be attributed to higher-order relativistic, also called non-radiative quantum electrodynamics (QED), corrections of the perturbative approach that are automatically included in the variational solution of the no-pair Dirac-Coulomb-Breit (DCB) equation to all orders of the α fine-structure constant.

View Article and Find Full Text PDF

The Dirac-Coulomb equation with positive-energy projection is solved using explicitly correlated Gaussian functions. The algorithm and computational procedure aims for a parts-per-billion convergence of the energy to provide a starting point for further comparison and further developments in relation with high-resolution atomic and molecular spectroscopy. Besides a detailed discussion of the implementation of the fundamental spinor structure, permutation, and point-group symmetries, various options for the positive-energy projection procedure are presented.

View Article and Find Full Text PDF

The Breit interaction is implemented in the no-pair variational Dirac-Coulomb (DC) framework using an explicitly correlated Gaussian basis reported in the previous paper [P. Jeszenszki, D. Ferenc, and E.

View Article and Find Full Text PDF

A recently developed lower bound theory for Coulombic problems (E. Pollak, R. Martinazzo, , , 1535) is further developed and applied to the highly accurate calculation of the ground-state energy of two- (He, Li, and H) and three- (Li) electron atoms.

View Article and Find Full Text PDF

A variational solution procedure is reported for the many-particle no-pair Dirac-Coulomb and Dirac-Coulomb-Breit Hamiltonians aiming at a parts-per-billion (ppb) convergence of the atomic and molecular energies, described within the fixed nuclei approximation. The procedure is tested for nuclear charge numbers from Z = 1 (hydrogen) to 28 (iron). Already for the lowest Z values, a significant difference is observed from leading-order Foldy-Woythusen perturbation theory, but the observed deviations are smaller than the estimated self-energy and vacuum polarization corrections.

View Article and Find Full Text PDF

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments.

View Article and Find Full Text PDF

An overview of geminal-based wavefunctions is given, allowing for singlet-triplet mixing within the two-electron units. Spin contamination of the total wavefunction (obtained as an antisymmetrized product) is restored by spin projection. Full variation after projection is examined for two models.

View Article and Find Full Text PDF

Spin-adaptation of virtual functions in state-specific multireference perturbation theory is examined. Redundancy occurring among virtual functions generated by unitary group based excitation operators on a model-space function is handled by canonical orthogonalization. The treatment is found to remove non-physical kinks observed earlier on potential energy surfaces.

View Article and Find Full Text PDF