Tandem mass spectrometry (MS/MS) techniques, developed for protein identification, are increasingly being applied in the field of peptidomics. Using this approach, the set of protein fragments observed in a sample of interest can be determined to gain insights into important biological processes such as signaling and other bioactivities. As the peptidomics era progresses, there is a need for robust and convenient methods to inspect and analyze MS/MS derived data.
View Article and Find Full Text PDFLow-throughput experiments and high-throughput proteomic and genomic analyses have created enormous quantities of data that can be used to explore protein function and evolution. The ability to consolidate these data into an informative and intuitive format is vital to our capacity to comprehend these distinct but complementary sources of information. However, existing tools to visualize protein-related data are restricted by their presentation, sources of information, functionality or accessibility.
View Article and Find Full Text PDFBackground: Multiple sequence alignments (MSA) are widely used in sequence analysis for a variety of tasks. Outlier sequences can make downstream analyses unreliable or make the alignments less accurate while they are being constructed. This paper describes a simple method for automatically detecting outliers and accompanying software called OD-seq.
View Article and Find Full Text PDFThe recent expansion in our knowledge of protein-protein interactions (PPIs) has allowed the annotation and prediction of hundreds of thousands of interactions. However, the function of many of these interactions remains elusive. The interactions of Eukaryotic Linear Motif (iELM) web server provides a resource for predicting the function and positional interface for a subset of interactions mediated by short linear motifs (SLiMs).
View Article and Find Full Text PDFLinear motifs are short, evolutionarily plastic components of regulatory proteins and provide low-affinity interaction interfaces. These compact modules play central roles in mediating every aspect of the regulatory functionality of the cell. They are particularly prominent in mediating cell signaling, controlling protein turnover and directing protein localization.
View Article and Find Full Text PDF