Publications by authors named "Peter J S Smith"

An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α.

View Article and Find Full Text PDF

There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain.

View Article and Find Full Text PDF

Familial Parkinson's disease (PD) protein DJ-1 mutations are linked to early onset PD. We have found that DJ-1 binds directly to the FF ATP synthase β subunit. DJ-1's interaction with the β subunit decreased mitochondrial uncoupling and enhanced ATP production efficiency while in contrast mutations in DJ-1 or DJ-1 knockout increased mitochondrial uncoupling, and depolarized neuronal mitochondria.

View Article and Find Full Text PDF

Inefficiency of oxidative phosphorylation can result from futile leak conductance through the inner mitochondrial membrane. Stress or injury may exacerbate this leak conductance, putting cells, and particularly neurons, at risk of dysfunction and even death when energy demand exceeds cellular energy production. Using a novel method, we have recently described an ion conductance consistent with mitochondrial permeability transition pore (mPTP) within the c-subunit of the ATP synthase.

View Article and Find Full Text PDF

We report the Laser Induced Forward Transfer (LIFT) of antibodies from a liquid donor film onto paper receivers for application as point-of-care diagnostic sensors. To minimise the loss of functionality of the active biomolecules during transfer, a dynamic release layer was employed to shield the biomaterial from direct exposure to the pulsed laser source. Cellulose paper was chosen as the ideal receiver because of its inherent bio-compatibility, liquid transport properties, wide availability and low cost, all of which make it an efficient and suitable platform for point-of-care diagnostic sensors.

View Article and Find Full Text PDF

The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors.

View Article and Find Full Text PDF

The accumulation of microbial biofilms on ships' hulls negatively affects ship performance and efficiency while also playing a role in the establishment of even more detrimental hard-fouling communities. However, there is little quantitative information on how the accumulation rate of microbial biofilms is impacted by the balance of the rates of cell settlement, in situ production (ie growth), dispersal to surrounding waters and mortality induced by grazers. These rates were quantified on test panels coated with copper-based antifouling (AF) or polymer-based fouling-release (FR) coatings by using phospholipids as molecular proxies for microbial biomass.

View Article and Find Full Text PDF

Serous epithelial ovarian cancer (EOC) patients often succumb to aggressive metastatic disease, yet little is known about the behavior and genetics of ovarian cancer metastasis. Here, we aim to understand how omental metastases differ from primary tumors and how these differences may influence chemotherapy. We analyzed the miRNA expression profiles of primary EOC tumors and their respective omental metastases from 9 patients using miRNA Taqman qPCR arrays.

View Article and Find Full Text PDF

Cellular stress or injury can result in mitochondrial dysfunction, which has been linked to many chronic neurological disorders including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Stressed and dysfunctional mitochondria exhibit an increase in large conductance mitochondrial membrane currents and a decrease in bioenergetic efficiency. Inefficient energy production puts cells, and particularly neurons, at risk of death when energy demands exceed cellular energy production.

View Article and Find Full Text PDF

Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion.

View Article and Find Full Text PDF

Anti-apoptotic Bcl2 family proteins such as Bcl-x(L) protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-x(L) enhances the efficiency of energy metabolism. Our evidence indicates that Bcl-x(L)interacts directly with the β-subunit of the F(1)F(O) ATP synthase, decreasing an ion leak within the F(1)F(O) ATPase complex and thereby increasing net transport of H(+) by F(1)F(O) during F(1)F(O) ATPase activity.

View Article and Find Full Text PDF

Estrogens are major risk factors for the development of breast cancer; they can be metabolized to catechols, which are further oxidized to DNA-reactive quinones and semiquinones (SQs). These metabolites are mutagenic and may contribute to the carcinogenic activity of estrogens. Redox cycling of the SQs and subsequent generation of reactive oxygen species (ROS) is also an important mechanism leading to DNA damage.

View Article and Find Full Text PDF

Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide.

View Article and Find Full Text PDF

Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling.

View Article and Find Full Text PDF

Ca(2+) signaling in the extra- and intracellular domains is linked to Ca(2+) transport across the plasma membrane. Noninvasive monitoring of these resulting extracellular Ca(2+) gradients with self-referencing of Ca(2+)-selective microelectrodes is used for studying Ca(2+) signaling across Kingdoms. The quantitated Ca(2+) flux enables comparison with changes to intracellular [Ca(2+)] measured with other methods and determination of Ca(2+) transport stoichiometry.

View Article and Find Full Text PDF

The medium surrounding cells either in culture or in tissues contains a chemical mix varying with cell state. As solutes move in and out of the cytoplasmic compartment they set up characteristic signatures in the cellular boundary layers. These layers are complex physical and chemical environments the profiles of which reflect cell physiology and provide conduits for intercellular messaging.

View Article and Find Full Text PDF

Ion regulation is a biological process crucial to the survival of mosquito larvae and a major organ responsible for this regulation is the rectum. The recta of anopheline larvae are distinct from other subfamilies of mosquitoes in several ways, yet have not yet been characterized extensively. Here we characterize the two major cell types of the anopheline rectum, DAR and non-DAR cells, using histological, physiological, and pharmacological analyses.

View Article and Find Full Text PDF

The enzyme nitric oxide (NO) synthase, that produces the signaling molecule NO, has been identified in several cell types in the inner ear. However, it is unclear whether a measurable quantity of NO is released in the inner ear to confer specific functions. Indeed, the functional significance of NO and the elementary cellular mechanism thereof are most uncertain.

View Article and Find Full Text PDF

Background: Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic beta-cells, in particular cAMP, Ca(2+) and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors.

View Article and Find Full Text PDF

Pyruvate cycling has been implicated in glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells. The operation of some pyruvate cycling pathways is proposed to necessitate malate export from the mitochondria and NADP(+)-dependent decarboxylation of malate to pyruvate by cytosolic malic enzyme (ME1). Evidence in favor of and against a role of ME1 in GSIS has been presented by others using small interfering RNA-mediated suppression of ME1.

View Article and Find Full Text PDF

In order to determine the sequence of cellular processes in glutamate toxicity, we simultaneously recorded O(2) consumption, cytosolic Ca(2+) concentration ([Ca(2+)](i)), and mitochondrial membrane potential (mDeltapsi) in single cortical neurons. Oxygen consumption was measured using an amperometric self-referencing platinum electrode adjacent to neurons in which [Ca(2+)](i) and mDeltapsi were monitored with Fluo-4 and TMRE(+), respectively, using a spinning disk laser confocal microscope. Excitotoxic doses of glutamate caused an elevation of [Ca(2+)](i) followed seconds afterwards by an increase in O(2) consumption which reached a maximum level within 1-5 min.

View Article and Find Full Text PDF

Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells.

View Article and Find Full Text PDF

Basal cells are by definition located on the basolateral side of several epithelia, and they have never been observed reaching the lumen. Using high-resolution 3D confocal imaging, we report that basal cells extend long and slender cytoplasmic projections that not only reach toward the lumen but can cross the tight junction barrier in some epithelia of the male reproductive and respiratory tracts. In this way, the basal cell plasma membrane is exposed to the luminal environment.

View Article and Find Full Text PDF

We have developed a noninvasive instrument called the bioelectric field imager (BFI) for mapping the electric field between the epidermis and the stratum corneum near wounds in both mouse and human skin. Rather than touching the skin, the BFI vibrates a small metal probe with a displacement of 180 mum in air above the skin to detect the surface potential of the epidermis through capacitative coupling. Here we describe our first application of the BFI measuring the electric field between the stratum corneum and epidermis at the margin of skin wounds in mice.

View Article and Find Full Text PDF

Pharmabase is designed to form a bridge between the molecular dimension of cell transport processes and the functional manipulation of the protein players. It has as its emphasis membrane transport and related pharmacology. Several search and navigation options are available, including membrane transport, disease, and a graphic interface arranged by pathway and cell type.

View Article and Find Full Text PDF