Publications by authors named "Peter J Ralph"

Biomining using microalgae has emerged as a sustainable option to extract rare earth elements (REEs). This study aims to (i) explore the capability of REEs recovery from bauxite by microalgae, (ii) assess the change of biochemical function affected by bauxite, and (iii) investigate the effects of operating conditions (i.e.

View Article and Find Full Text PDF

This study evaluates the repurposing of expired isopropanol (IPA) COVID-19 disinfectant (64% w/w) to pretreat algal biomass for enhancing methane (CH) yield. The impact of harvesting methods (centrifugation and polymer flocculation) and microwave pretreatment on CH production from Scenedesmus sp. microalgal biomass were also investigated.

View Article and Find Full Text PDF

Stretchable and self-adhesive conductive hydrogels hold significant importance across a wide spectrum of applications, including human-machine interfaces, wearable devices, and soft robotics. However, integrating multiple properties, such as high stretchability, strong interfacial adhesion, self-healing capability, and sensitivity, into a single material poses significant technical challenges. Herein, we present a multifunctional conductive hydrogel based on poly(acrylic acid) (PAA), dopamine-functionalized pectin (PT-DA), polydopamine-coated reduction graphene oxide (rGO-PDA), and Fe as an ionic cross-linker.

View Article and Find Full Text PDF
Article Synopsis
  • - This review analyzes the prevalence and impact of microplastics (MPs) and various organic contaminants (OCs) in biosolids, highlighting that MPs and linear alkylbenzene sulfonate surfactants are the most common pollutants found.
  • - It notes that while dioxins and polychlorinated biphenyls are minimally present (<0.01%), OCs are more prevalent in Europe compared to Asia and the Americas, and that Australian biosolids have significantly higher MP concentrations than those in the US and Europe.
  • - The study concludes that anaerobic digestion is the most effective method for treating these contaminants in biosolids, while thermal treatment shows promise but needs further development in terms of infrastructure and
View Article and Find Full Text PDF

We investigated two non-ionising mutagens in the form of ultraviolet radiation (UV) and ethyl methanosulfonate (EMS) and an ionising mutagen (X-ray) as methods to increase fucoxanthin content in the model diatom Phaeodactylum tricornutum. We implemented an ultra-high throughput method using fluorescence-activated cell sorting (FACS) and live culture spectral deconvolution for isolation and screening of potential pigment mutants, and assessed phenotype stability by measuring pigment content over 6 months using high-performance liquid chromatography (HPLC) to investigate the viability of long-term mutants. Both UV and EMS resulted in significantly higher fucoxanthin within the 6 month period after treatment, likely as a result of phenotype instability.

View Article and Find Full Text PDF

Symbiodiniaceae form associations with extra- and intracellular bacterial symbionts, both in culture and in symbiosis with corals. Bacterial associates can regulate Symbiodiniaceae fitness in terms of growth, calcification and photophysiology. However, the influence of these bacteria on interactive stressors, such as temperature and light, which are known to influence Symbiodiniaceae physiology, remains unclear.

View Article and Find Full Text PDF

Rare earth elements (REEs) are essential for advanced manufacturing (e.g., renewable energy, military equipment, electric vehicles); hence, the recovery of REEs from low-grade resources has become increasingly important to address their growing demand.

View Article and Find Full Text PDF

Phenomics is a relatively new discipline of biology that has been widely applied in several fields, mainly in crop sciences. We reviewed the concepts used in this discipline (particularly for plants) and found a lack of consensus on what defines a phenomic study. Furthermore, phenomics has been primarily developed around its technical aspects (operationalization), while the conceptual framework of the actual research lags behind.

View Article and Find Full Text PDF

We can use photosynthesis to capture carbon and make industries greener. Algae-driven carbon capture and manufacturing offer the potential for reducing CO2 emissions while also producing commodities such as bioplastics.

View Article and Find Full Text PDF

Light intensity and temperature independently impact all parts of the photosynthetic machinery in plants and algae. Yet to date, the vast majority of pulse amplitude modulated (PAM) chlorophyll a fluorescence measurements have been performed at well-defined light intensities, but rarely at well-defined temperatures. In this work, we show that PAM measurements performed at various temperatures produce vastly different results in the chlorophyte Chlorella vulgaris.

View Article and Find Full Text PDF

The effects of microalgae harvesting methods on microalgal biomass quality were evaluated using three species namely the freshwater green alga Chlorella vulgaris, marine red alga Porphyridium purpureum and marine diatom Phaeodactylum tricornutum. Harvesting efficiencies of polyacrylamide addition, alkaline addition, and centrifugation ranged from 85 to 95, 59-92 and 100%, respectively, across these species. Morphology of the harvested cells (i.

View Article and Find Full Text PDF

The green microalga Chlamydomonas reinhardtii is emerging as a promising cell biofactory for secreted recombinant protein (RP) production. In recent years, the generation of the broadly used cell wall-deficient mutant strain UVM4 has allowed for a drastic increase in secreted RP yields. However, purification of secreted RPs from the extracellular space of C.

View Article and Find Full Text PDF

Copper ion (Cu) and zinc ion (Zn) are widely co-existent in anaerobic digestion effluent as typical contaminants. This work aims to explore how Cu-Zn association affects physiological properties of S. platensis using Schlösser medium (SM) and sterilized anaerobic digestion effluent (SADE).

View Article and Find Full Text PDF

Microalgal biotechnology shows considerable promise as a sustainable contributor to a broad range of industrial avenues. The field is however limited by processing methods that have commonly hindered the progress of high throughput screening, and consequently development of improved microalgal strains. We tested various microplate reader and flow cytometer methods for monitoring the commercially relevant pigment fucoxanthin in the marine diatom Based on accuracy and flexibility, we chose one described previously to adapt to live culture samples using a microplate reader and achieved a high correlation to HPLC (R = 0.

View Article and Find Full Text PDF

Rapid light curves are one of the most widely used methods for assessing the physiological state of photosynthetic organisms. While the method has been applied in a range of physiological studies over the last 20 years, little progress has been made in adapting it for the new age of multi-parametric phenotyping. In order to advance research that is aimed at evaluating the physiological impact of multiple factors, the Phenoplate was developed: a simultaneous assessment of temperature and light gradients.

View Article and Find Full Text PDF

Microalgae produce a broad range of organic compounds that are increasingly being recognised for their value in novel product production and biotechnological applications. Most microalgae are photoautotrophic, but some are capable of either mixotrophy or heterotrophy. Reported enhanced biomass yields or contrasting metabolite profiles compared to autotrophic growth improve the economics of large-scale production of microalgae, which currently limits industrial applications.

View Article and Find Full Text PDF

This study aims to elucidate the mechanisms governing the harvesting efficiency of Chlorella vulgaris by flocculation using a cationic polymer. Flocculation efficiency increased as microalgae culture matured (i.e.

View Article and Find Full Text PDF

Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses.

View Article and Find Full Text PDF

The commercialisation of valuable plant triterpenoids faces major challenges, including low abundance in natural hosts and costly downstream purification procedures. Endeavours to produce these compounds at industrial scale using microbial systems are gaining attention. Here, we report on a strategy to enrich the biomass of the biotechnologically-relevant strain UVM4 with valuable triterpenes, such as squalene and ()-2,3-epoxysqualene.

View Article and Find Full Text PDF

Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase () and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known.

View Article and Find Full Text PDF

Marine phytoplankton, and in particular diatoms, are responsible for almost half of all primary production on Earth. Diatom species thrive from polar to tropical waters and across light environments that are highly complex to relatively benign, and so have evolved highly divergent strategies for regulating light capture and utilization. It is increasingly well established that diatoms have achieved such successful ecosystem dominance by regulating excitation energy available for generating photosynthetic energy via highly flexible light harvesting strategies.

View Article and Find Full Text PDF

Dinoflagellates of the family Symbiodiniaceae form mutualistic symbioses with marine invertebrates such as reef-building corals, but also inhabit reef environments as free-living cells. Most coral species acquire Symbiodiniaceae horizontally from the surrounding environment during the larval and/or recruitment phase, however the phylogenetic diversity and ecology of free-living Symbiodiniaceae on coral reefs is largely unknown. We coupled environmental DNA sequencing and genus-specific qPCR to resolve the community structure and cell abundances of free-living Symbiodiniaceae in the water column, sediment, and macroalgae and compared these to coral symbionts.

View Article and Find Full Text PDF

Diversion of food waste from landfill disposal to waste-to-energy facilities has become both an environmentally and economically viable option to support the circular bioeconomy. However, the liquid centrate produced during anaerobic digestion is high in total ammonia, with concentrations ~2000 g m, and can release gaseous emissions, including ammonia, methane, CO and nitrous oxide, to the atmosphere. Further treatment is required before discharge to sewer, or to the environment.

View Article and Find Full Text PDF