Publications by authors named "Peter J Quinn"

Molecular dynamics simulations amounting to ≈8 μs demonstrate that the glucose transporter GLUT1 undergoes structural fluctuations mediated by the fluidity of the lipid bilayer and the proximity to glucose. The fluctuations of GLUT1 increase as the glucose concentration is raised. These fluctuations are more pronounced when the lipid bilayer is in the fluid compared to the gel phase.

View Article and Find Full Text PDF

The structure of fully hydrated bilayers composed of equimolar proportions of palmitoylsphingomyelin (PSM) and cholesterol has been examined by synchrotron X-ray powder diffraction and atomistic molecular dynamics (MD) simulations. Two coexisting bilayer structures, which are distinguished by the transbilayer phosphate-phosphate distance of coupled PSM molecules, are observed by diffraction at 37 °C. The MD simulations reveal that PSM molecules in the thicker membrane are characterized by more ordered, more extended, and less interdigitated hydrocarbon tails compared to those in the thinner membrane.

View Article and Find Full Text PDF

L-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. L-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of L-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production.

View Article and Find Full Text PDF

Experimental evidence has shown a close correlation between the composition and physical state of the membrane bilayer and glucose transport activity via the glucose transporter GLUT1. Cooling alters the membrane lipids from the fluid to gel phase, and also causes a large decrease in the net glucose transport rate. The goal of this study is to investigate how the physical phase of the membrane alters glucose transporter structural dynamics using molecular-dynamics simulations.

View Article and Find Full Text PDF

3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2 -lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2 -lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2 -lipid A structure across different species.

View Article and Find Full Text PDF

Introduction: Automated lipidomic methods based on mass spectrometry (MS) are now proposed to screen a large variety of candidate drugs available that inhibit de novo lipid synthesis and replace tedious methods based on radiotracer incorporation. A major new interest in inhibitors of de novo lipogenesis is their proapoptotic effect observed in cancerous cells.

Areas Covered: In this review, the authors focus on the screening methods of antilipogenic inhibitors targeting the synthesis of malonylCoA (carbonic anhydrase, acetylCoA carboxylase), palmitylCoA (fatty acid synthase condensing and thioesterase subunits) and monounsaturated fatty acids (Δ9-desaturase).

View Article and Find Full Text PDF

The calcium-mediated interaction of DNA with monolayers of the non-toxic, zwitterionic phospholipid, 1,2-distearoyl-sn-glycero-3-phosphocholine when mixed with 50 mol% of a second lipid, either the zwitteronic 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or neutral cholesterol was investigated using a combination of surface pressure-area isotherms, Brewster angle microscopy, external reflectance Fourier transform infrared spectroscopy and specular neutron reflectivity in combination with contrast variation. When calcium and DNA were both present in the aqueous subphase, changes were observed in the compression isotherms as well as the surface morphologies of the mixed lipid monolayers. In the presence of calcium and DNA, specular neutron reflectivity showed that directly underneath the head groups of the lipids comprising the monolayers, DNA occupied a layer comprising approximately 13 and 18% v/v DNA for the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesterol-containing monolayers, respectively.

View Article and Find Full Text PDF

Lipid domain formation in membranes underlies the concept of rafts but their structure is controversial because the key role of cholesterol has been challenged. The configuration of glycosphingolipid receptors for agonists, bacterial toxins and enveloped viruses in plasma membrane rafts appears to be an important factor governing ligand binding and infectivity but the details are as yet unresolved. I have used X-ray diffraction methods to examine how cholesterol affects the distribution of glycosphingolipid in aqueous dispersions of an equimolar mixture of cholesterol and egg-sphingomyelin containing different proportions of glucosylceramide from human extracts.

View Article and Find Full Text PDF

Phospholipid vesicles (liposomes) formed in pharmaceutically acceptable nonaqueous polar solvents such as propylene glycol are of interest in drug delivery because of their ability to improve the bioavailability of drugs with poor aqueous solubility. We have demonstrated a stabilizing effect of cholesterol on lamellar phases formed by dispersion of distearoylphosphatidylcholine (DSPC) in water/propylene glycol (PG) solutions with glycol concentrations ranging from 0 to 100%. The stability of the dispersions was assessed by determining the effect of propylene glycol concentration on structural parameters of the lamellar phases using a complementary combination of X-ray and neutron scattering techniques at 25 °C and in the case of X-ray scattering at 65 °C.

View Article and Find Full Text PDF

Sphingomyelin and cholesterol are of interest to biologists because they interact to form condensed structures said to be responsible for a variety of functions that membranes perform. Synchrotron X-ray diffraction methods have been used to investigate the structure of bilayers of D-erythro palmitoyl-sphingomyelin and complexes formed by palmitoyl- and egg-sphingomyelin with cholesterol in aqueous multibilayer dispersions. D-erythro palmitoyl sphingomyelin bilayers exist in two conformers that are distinguished by their lamellar repeat spacing, bilayer thickness, and polar group hydration.

View Article and Find Full Text PDF

Cells grown in culture are frequently employed to model lipid metabolism in vivo. There are reasons of convenience for this but examination of the lipidome of cultured cells and their metabolic responses to lipid supplementation give cause to indicate disparity with their counterparts in living animals. The reason is mainly that homeostatic regulation is exercised in animals supplied with an adequate diet in which the adipose tissue and liver represent plentiful sources of lipid integrated via inter-organ collaboration and able to buffer transient fluctuations in dietary lipid and essential fatty acids (EFAs).

View Article and Find Full Text PDF

S-Adenosyl-L-methionine is an important bioactive sulfur-containing amino acid. Large scale preparation of the amino acid is of great significance. S-Adenosyl-L-methionine can be synthesized from L-methionine and adenosine triphosphate in a reaction catalyzed by methionine adenosyltransferase.

View Article and Find Full Text PDF

L-threonine, one of the three major amino acids produced throughout the world, has a wide application in industry, as an additive or as a precursor for the biosynthesis of other chemicals. It is predominantly produced through microbial fermentation the efficiency of which largely depends on the quality of strains. Metabolic engineering based on a cogent understanding of the metabolic pathways of L-threonine biosynthesis and regulation provides an effective alternative to the traditional breeding for strain development.

View Article and Find Full Text PDF

There is considerable interest in lateral domain structure in biological membranes not least because a variety of physiological processes are believed to require assembly and mutual organization of particular membrane components for their execution. Domain structure is known to be created by differences in physicochemical properties between membrane lipids such as phase transition temperature, intermolecular hydrogen bonding and ionic functional groups. Domains are also created by specific interactions between different membrane lipids to form stoichiometric complexes.

View Article and Find Full Text PDF

There are numerous phospholipid formulations that incorporate α-tocopherol as a stabilizing agent but there are few studies of the effect of α-tocopherol on phospholipid structure and bilayer permeability. This study uses synchrotron X-ray powder diffraction methods to investigate how α-tocopherol changes the structure of distearoylphosphatidylcholines bilayers. Increasing proportions of α-tocopherol up to 20 mol% induces ripple structures in the bilayers.

View Article and Find Full Text PDF

The lipidome of the liver and the secreted circulating lipoproteins can now be interrogated conveniently by automated mass spectrometric methods. Multivariate analysis of the liver and serum lipid composition in various animal modes or in human patients has pointed to specific molecular species markers. The perturbations of lipid metabolism can be categorized on the basis of three basic pathological mechanisms: (1) an accelerated rate of de novo lipogenesis; (2) perturbation of the peroxisome pathway of ether-lipid and very-long-chain fatty acid biosynthesis; (3) a change in the rate of interconversion of essential omega-3 and -6 polyunsaturated fatty acids.

View Article and Find Full Text PDF

The rising incidence of cardiovascular and metabolic diseases in industrialized countries has led the pharmaceutical industry to make them key areas of drug development. These diseases imply a clustering of metabolic factors where lipid metabolites play a relevant role. Measurement of pharmacodynamic endpoints of drugs on lipid metabolism pathways and downstream biological processes appear crucial for a rational drug discovery/development.

View Article and Find Full Text PDF

Interaction between membrane lipids creates lateral domains within which essential membrane processes like trans-membrane signaling, differentiation etc. take place. Attention has focused on liquid-ordered phases formed by sphingomyelin and cholesterol but formation of ordered domains on the cytoplasmic membrane surfaces has largely been neglected.

View Article and Find Full Text PDF

Specific lipid-lipid interactions are believed to be responsible for lateral domain formation in the lipid bilayer matrix of cell membranes. The miscibility of glucocerebroside and sphingomyelin extracted from biological tissues has been examined by synchrotron X-ray powder diffraction methods. Fully hydrated binary mixtures of egg-sphingomyelin codispersed with glucosylceramide rich in saturated C22 and C24 N-acyl fatty acids were subjected to heating scans between 20 and 90 °C at 2 °C·min(-1).

View Article and Find Full Text PDF

Sphingomyelin and cholesterol are membrane lipids that interact to form liquid-ordered phase believed to act as a platform for the organization of signaling proteins. We report analyses of synchrotron X-ray powder diffraction patterns recorded from aqueous dispersions of ternary mixtures of sphingomyelin and phosphatidylcholine from egg yolk and cholesterol to investigate how cholesterol distributes between the two phospholipids. In the absence of cholesterol the two phospholipids are immiscible between 20 and 50 °C.

View Article and Find Full Text PDF

Protein sorting and assembly in membrane biogenesis and function involves the creation of ordered domains of lipids known as membrane rafts. The rafts are comprised of all the major classes of lipids, including glycerophospholipids, sphingolipids and sterol. Cholesterol is known to interact with sphingomyelin to form a liquid-ordered bilayer phase.

View Article and Find Full Text PDF

L-threonine is an essential amino acid for mammals and as such has a wide and expanding application in industry with a fast growing market demand. The major method of production of l-threonine is microbial fermentation. To optimize L-threonine production the fundamental solution is to develop robust microbial strains with high productivity and stability.

View Article and Find Full Text PDF

Endotoxin refers lipopolysaccharide that constitutes the outer leaflet of the outer membrane of most Gram-negative bacteria. Lipopolysaccharide is comprised of a hydrophilic polysaccharide and a hydrophobic component known as lipid A which is responsible for the major bioactivity of endotoxin. Lipopolysaccharide can be recognized by immune cells as a pathogen-associated molecule through Toll-like receptor 4.

View Article and Find Full Text PDF

Domains in cell membranes are created by lipid-lipid interactions and are referred to as membrane rafts. Reliable isolation methods have been developed which have shown that rafts from the same membranes have different proteins and can be sub-fractionated by immunoaffinity methods. Analysis of these raft subfractions shows that they are also comprised of different molecular species of lipids.

View Article and Find Full Text PDF

The phase behavior of egg sphingomyelin (ESM) mixtures with cholesterol or 7-dehydrocholesterol (7-DHC) has been investigated by independent methods: fluorescence microscopy, X-ray diffraction, and electron spin resonance spectroscopy. In giant vesicles, cholesterol-enriched domains appeared as large and clearly delineated domains assigned to a liquid-ordered (Lo) phase. The domains containing 7-DHC were smaller and had more diffuse boundaries.

View Article and Find Full Text PDF