Publications by authors named "Peter J Ortoleva"

Chemical and enzymatic modifications of peptide-displayed libraries have been successfully employed to expand the phage display library. However, the requirement of specific epitopes and scaffolds has limited the scope of protein engineering using phage display. In this study, we present a novel approach utilizing omniligase-1-mediated selective and specific ligation on the phage pIII protein, offering a high conversion rate and compatibility with commercially available phage libraries.

View Article and Find Full Text PDF

Antibody-antigen interaction-at antigenic local environments called B-cell epitopes-is a prominent mechanism for neutralization of infection. Effective mimicry, and display, of B-cell epitopes is key to vaccine design. Here, a physical approach is evaluated for the discovery of epitopes which evolve slowly over closely related pathogens (conserved epitopes).

View Article and Find Full Text PDF

A Padé approximant scheme for realizing the discrete-time evolution of the state of a many-atom system is introduced. This temporal coarse-graining scheme accounts for the underlying Newtonian physics and avoids the need for construction of spatially coarse-grained variables. Newtonian physics is incorporated through short molecular dynamics simulations at the beginning of each of the large coarse-grained timesteps.

View Article and Find Full Text PDF

Amphiphilic alkoxybenzonitriles (ABNs) of varying chain length are studied at the solution/graphite interface to analyze dynamics of assembly. Competitive self-assembly between ABNs and alkanoic acid solvent is shown by scanning tunneling microscopy (STM) to be controlled by concentration and molecular size. Molecular dynamics (MD) simulations reveal key roles of the sub-nanosecond fundamental steps of desorption, adsorption, and on-surface motion.

View Article and Find Full Text PDF

Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed.

View Article and Find Full Text PDF

Constructing atom-resolved states from low-resolution data is of practical importance in many areas of science and engineering. This problem is addressed in this article in the context of multiscale factorization methods for molecular dynamics. These methods capture the crosstalk between atomic and coarse-grained scales arising in macromolecular systems.

View Article and Find Full Text PDF

Molecular dynamics systems evolve through the interplay of collective and localized disturbances. As a practical consequence, there is a restriction on the time step imposed by the broad spectrum of time scales involved. To resolve this restriction, multiscale factorization was introduced for molecular dynamics as a method that exploits the separation of time scales by coevolving the coarse-grained and atom-resolved states via Trotter factorization.

View Article and Find Full Text PDF

Prediction of immunogenicity is a substantial barrier in vaccine design. Here, a molecular dynamics approach to assessing the immunogenicity of nanoparticles based on structure is presented. Molecular properties of epitopes on nonenveloped viral particles are quantified via a set of metrics.

View Article and Find Full Text PDF

Simulations of virus-like particles needed for computer-aided vaccine design highlight the need for new algorithms that accelerate molecular dynamics. Such simulations via conventional molecular dynamics present a practical challenge due to the millions of atoms involved and the long timescales of the phenomena of interest. These phenomena include structural transitions, self-assembly, and interaction with a cell surface.

View Article and Find Full Text PDF

Molecular dynamics simulation of an atom-resolved bacteriophage P22 capsid model is used to delineate the underlying mechanism of early stage P22 self-assembly. A dimer formed by the C-terminal fragment of scaffolding protein with a new conformation is demonstrated to catalyze capsomer (hexamer and pentamer) aggregation efficiently. Effects of scaffolding protein/coat protein binding patterns and scaffolding protein concentration on efficiency, fidelity, and capsid curvature of P22 self-assembly are identified.

View Article and Find Full Text PDF

Mesoscopic -atom systems derive their structural and dynamical properties from processes coupled across multiple scales in space and time. A multiscale method for simulating these systems in the friction dominated regime from the underlying -atom formulation is presented. The method integrates notions of multiscale analysis, Trotter factorization, and a hypothesis that the momenta conjugate to coarse-grained variables constitute a stationary process on the time scale of coarse-grained dynamics.

View Article and Find Full Text PDF

A closed kinetic equation for the single-particle density of a viscous simple liquid is derived using a variational method for the Liouville equation and a coarse-grained mean-field (CGMF) ansatz. The CGMF ansatz is based on the notion that during the characteristic time of deformation a given particle interacts with many others so that it experiences an average interaction. A trial function for the N-particle probability density is constructed using a multiscale perturbation method and the CGMF ansatz is applied to it.

View Article and Find Full Text PDF

Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom.

View Article and Find Full Text PDF

Developing antiviral vaccines is increasingly challenging due to associated time and cost of production as well as emerging drug-resistant strains. A computer-aided vaccine design strategy is presented that could greatly accelerate the discovery process and yield vaccines with high immunogenicity and thermal stability. Our strategy is based on foreign viral epitopes engineered onto well-established virus-like particles (VLPs) and demonstrates that such constructs present similar affinity for antibodies as does a native virus.

View Article and Find Full Text PDF

A variational method for the classical Liouville equation is introduced that facilitates the development of theories for non-equilibrium classical systems. The method is based on the introduction of a complex-valued auxiliary quantity Ψ that is related to the classical position-momentum probability density ρ via ρ = ΨΨ. A functional of Ψ is developed whose extrema imply that ρ satisfies the Liouville equation.

View Article and Find Full Text PDF

Macromolecular assemblies often display a hierarchical organization of macromolecules or their sub-assemblies. To model this, we have formulated a space warping method that enables capturing overall macromolecular structure and dynamics via a set of coarse-grained order parameters (OPs). This article is the first of two describing the construction and computational implementation of an additional class of OPs that has built into them the hierarchical architecture of macromolecular assemblies.

View Article and Find Full Text PDF

An approach for the automated discovery of low free energy states of macromolecular systems is presented. The method does not involve delineating the entire free energy landscape but proceeds in a sequential free energy minimizing state discovery; i.e.

View Article and Find Full Text PDF

We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived.

View Article and Find Full Text PDF

Coarse-grained features of macromolecular assemblies are understood via a set of order parameters (OPs) constructed in terms of their all-atom configuration. OPs are shown to be slowly changing in time and capture the large-scale spatial features of macromolecular assemblies. The relationship of these variables to the classic notion of OPs based on symmetry breaking phase transitions is discussed.

View Article and Find Full Text PDF

A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe.

View Article and Find Full Text PDF

An all-atom multiscale computational modeling approach, molecular dynamics/order parameter extrapolation (MD/OPX), has recently been developed for simulating large bionanosystems. It accelerates MD simulations and addresses rapid atomistic fluctuations and slowly varying nanoscale dynamics of bionanosystems simultaneously. With modules added to account for water molecules and ions, MD/OPX is applied to simulate the swelling of cowpea chlorotic mottle virus (CCMV) capsid solvated in a host medium in this study.

View Article and Find Full Text PDF

Pre-mRNA alternative splicing (AS) allows individual genes to produce multiple types of mRNA and associated protein isoforms. While AS regulation enables the production of the hundreds of thousands of types of proteins needed for the normal functioning of the human cell, it also presents many opportunities for the onset of cancer and other diseases. The AS process is known to be regulated by a group of serine/arginine rich (SR) proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), and small nuclear ribonucleoprotein (snRNP) particles through a complex assembly.

View Article and Find Full Text PDF

On the basis of an all-atom multiscale analysis theory of nanosystem dynamics, a multiscale molecular dynamics/order parameter extrapolation (MD/OPX) approach has recently been developed. It accelerates MD for long-time simulation of large bionanosystems and addresses rapid atomistic fluctuations and slowly varying coherent dynamics simultaneously. In this study, MD/OPX is optimized and implemented to simulate viral capsid structural transitions.

View Article and Find Full Text PDF

A multiscale approach, molecular dynamics/order parameter extrapolation (MD/OPX), to the all-atom simulation of large bionanosystems is presented. The approach starts with the introduction of a set of order parameters (OPs) automatically generated with orthogonal polynomials to characterize the nanoscale features of bionanosystems. The OPs are shown to evolve slowly via Newton's equations, and the all-atom multiscale analysis (AMA) developed earlier (Miao and Ortoleva, J Chem Phys 2006, 125, 44901) demonstrates the existence of their stochastic dynamics, which serve as the justification for our MD/OPX approach.

View Article and Find Full Text PDF