Objective: Increased breathing rate, apnea, and respiratory failure are associated with sudden unexpected death in epilepsy (SUDEP). We recently demonstrated the progressive nature of epilepsy and mortality in Kcna1 mice, a model of temporal lobe epilepsy and SUDEP. Here we tested the hypothesis that respiratory dysfunction progresses with age in Kcna1 mice, thereby increasing risk of respiratory failure and sudden death (SD).
View Article and Find Full Text PDFOrganic dust samples from swine confinement facilities elicit pro-inflammatory cytokine/chemokine release from bronchial epithelial cells and monocytes, dependent, in part, upon dust-induced activation of the protein kinase C (PKC) isoform, PKCε. PKCε is also rapidly activated in murine tracheal epithelial cells following in vivo organic dust challenges, yet the functional role of PKCε in modulating dust-induced airway inflammatory outcomes is not defined. Utilizing an established intranasal inhalation animal model, experiments investigated the biologic and physiologic responses following organic dust extract (ODE) treatments in wild-type (WT) and PKCε knock-out (KO) mice.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2012
There is very limited knowledge about the effects of alcohol on airway hyperresponsiveness and inflammation in asthma. Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that alcohol exposure will alter airway hyperresponsiveness (AHR) and pulmonary inflammation in a mouse model of allergic asthma.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
November 2010
Airway smooth muscle cells are the main effector cells involved in airway narrowing and have been used to study the signaling pathways involved in asthma-induced airway constriction. Our previous studies demonstrated that ethanol administration to mice attenuated methacholine-stimulated increases in airway responsiveness. Because ethanol administration attenuates airway responsiveness in mice, we hypothesized that ethanol directly blunts the ability of cultured airway smooth muscle cells to shorten.
View Article and Find Full Text PDFOrganic dust exposure in agricultural environments results in an inflammatory response that attenuates over time, but repetitive exposures can result in chronic respiratory disease. Animal models to study these mechanisms are limited. This study investigated the effects of single vs.
View Article and Find Full Text PDFTo examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion.
View Article and Find Full Text PDFMice have been used widely in in vivo and in vitro cardiovascular research. The availability of knockout mice provides further clues to the physiological significance of specific receptor subtypes. Adenosine A(1) receptor (A(1)AR)-knockout (A(1)KO) mice and their wild-type (A(1)WT) controls were employed in this investigation.
View Article and Find Full Text PDFIn allergen-induced asthma, activation of lung mast cells leads to bronchial constriction, increased mucus secretion, and an increase in the localization of inflammatory cells to the airways. The purpose of this study was to explore the role of mast cells in adenosine-mediated airway reactivity and inflammation using the mast cell degranulating agent, compound 48/80 (C48/80). Mice were sensitized and challenged with ragweed (or 0.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2005
The vascular response to adenosine and its analogs is mediated by four adenosine receptors (ARs), namely, A(1), A(2A), A(2B), and A(3). A(2A)ARs and/or A(2B)ARs are involved in adenosine-mediated vascular relaxation of coronary and aortic beds. However, the role of A(1)ARs in the regulation of vascular tone is less well substantiated.
View Article and Find Full Text PDF