Publications by authors named "Peter J Nixon"

Applying low-cost substrate is critical for sustainable bioproduction. Co-culture of phototrophic and heterotrophic microorganisms can be a promising solution as they can use CO and light as feedstock. This study aimed to create a light-driven consortium using a marine cyanobacterium Synechococcus sp.

View Article and Find Full Text PDF

The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates.

View Article and Find Full Text PDF

Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached.

View Article and Find Full Text PDF

The growth in world population, climate change, and resource scarcity necessitate a sustainable increase in crop productivity. Photosynthesis in major crops is limited by the inefficiency of the key CO-fixing enzyme Rubisco, owing to its low carboxylation rate and poor ability to discriminate between CO and O. In cyanobacteria and proteobacteria, carboxysomes function as the central CO-fixing organelles that elevate CO levels around encapsulated Rubisco to enhance carboxylation.

View Article and Find Full Text PDF

Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase.

View Article and Find Full Text PDF

The chloroplast ATP synthase produces the ATP needed for photosynthesis and plant growth. The trans-membrane flow of protons through the ATP synthase rotates an oligomeric assembly of c subunits, the c-ring. The ion-to-ATP ratio in rotary F1F0-ATP synthases is defined by the number of c-subunits in the rotor c-ring.

View Article and Find Full Text PDF
Article Synopsis
  • Rubisco is a crucial enzyme for carbon fixation in plants, but it operates inefficiently, limiting photosynthesis and crop productivity.
  • Researchers replaced the native tobacco Rubisco with a faster version from Halothiobacillus neapolitanus in tobacco plants without needing chaperones.
  • The modified Rubisco exhibited a 2-fold increase in carboxylation rate and maintained comparable growth rates to wild-type plants, suggesting potential for improved crop photosynthesis and growth.
View Article and Find Full Text PDF

FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria, mitochondria, and chloroplasts. Like most cyanobacteria, the model species Synechocystis sp. PCC 6803 contains four FtsH homologs, FtsH1-FtsH4.

View Article and Find Full Text PDF

James Barber, known to colleagues and friends as Jim, passed away in January 2020 after a long battle against cancer. During his long and distinguished career in photosynthesis research, Jim made many outstanding contributions with the pinnacle achieving his dream of determining the first detailed structure of the Mn cluster involved in photosynthetic water oxidation. Here, colleagues and friends remember Jim and reflect upon his scientific career and the impact he had on their lives and the scientific community.

View Article and Find Full Text PDF

The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single gene that produces hexameric homocomplexes with diverse house-keeping roles.

View Article and Find Full Text PDF

Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod).

View Article and Find Full Text PDF

How thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections.

View Article and Find Full Text PDF

Photochemical energy conversion during oxygenic photosynthesis is performed by membrane-embedded chlorophyll-binding protein complexes. The biogenesis and maintenance of these complexes requires auxiliary protein factors that optimize the assembly process and protect nascent complexes from photodamage. In cyanobacteria, several lipoproteins contribute to the biogenesis and function of the photosystem II (PSII) complex.

View Article and Find Full Text PDF
Article Synopsis
  • Infectious SARS-CoV-2 can be found in the saliva of COVID-19 patients, which raises concerns about how the virus spreads.
  • Antiviral mouthwashes may help lower the viral load in saliva, potentially preventing the virus from being transmitted, especially in dental settings.
  • The study found that certain mouthwashes, particularly those with stabilised hypochlorous acid or povidone iodine, significantly reduced SARS-CoV-2 levels, while others containing hydrogen peroxide or chlorhexidine were ineffective.
View Article and Find Full Text PDF

Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis. Due to their ability to use the photon energy of sunlight to fix carbon dioxide into biomass, cyanobacteria are promising hosts for the sustainable production of terpenoids, also known as isoprenoids, a diverse class of natural products with potential as advanced biofuels and high-value chemicals. However, the cyanobacterial enzymes involved in the biosynthesis of the terpene precursors needed to make more complicated terpenoids are poorly characterized.

View Article and Find Full Text PDF

The plastid terminal oxidase (PTOX) - an interfacial diiron carboxylate protein found in the thylakoid membranes of chloroplasts - oxidizes plastoquinol and reduces molecular oxygen to water. It is believed to play a physiologically important role in the response of some plant species to light and salt (NaCl) stress by diverting excess electrons to oxygen thereby protecting photosystem II (PSII) from photodamage. PTOX is therefore a candidate for engineering stress tolerance in crop plants.

View Article and Find Full Text PDF

Cyanobacteria, which use solar energy to convert carbon dioxide into biomass, are potential solar biorefineries for the sustainable production of chemicals and biofuels. However, yields obtained with current strains are still uncompetitive compared to existing heterotrophic production systems. Here we report the discovery and characterization of a new cyanobacterial strain, Synechococcus sp.

View Article and Find Full Text PDF

The naturally transformable cyanobacterium sp. PCC 6803 is a widely used chassis strain for the photosynthetic production of chemicals. However, possesses multiple genome copies per cell which means that segregating mutations across all genome copies can be time-consuming.

View Article and Find Full Text PDF

Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref.

View Article and Find Full Text PDF

Cyanobacteria are promising chassis strains for the photosynthetic production of platform and specialty chemicals from carbon dioxide. Their efficient light harvesting and metabolic flexibility abilities have allowed a wide range of biomolecules, such as the bioplastic polylactate precursor D-lactate, to be produced, though usually at relatively low yields. In order to increase photosynthetic electron flow towards the production of D-lactate, we have generated several strains of the marine cyanobacterium sp.

View Article and Find Full Text PDF

Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both PSI and PSII, but its mode of action remains unclear. Here, we show that RubA in the cyanobacterium sp PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry.

View Article and Find Full Text PDF

Cyanobacteria, such as Synechococcus sp. PCC 7002 (Syn7002), are promising chassis strains for "green" biotechnological applications as they can be grown in seawater using oxygenic photosynthesis to fix carbon dioxide into biomass. Their other major nutritional requirements for efficient growth are sources of nitrogen (N) and phosphorus (P).

View Article and Find Full Text PDF

Robust photosynthesis in chloroplasts and cyanobacteria requires the participation of accessory proteins to facilitate the assembly and maintenance of the photosynthetic apparatus located within the thylakoid membranes. The highly conserved Ycf48 protein acts early in the biogenesis of the oxygen-evolving photosystem II (PSII) complex by binding to newly synthesized precursor D1 subunit and by promoting efficient association with the D2 protein to form a PSII reaction center (PSII RC) assembly intermediate. Ycf48 is also required for efficient replacement of damaged D1 during the repair of PSII.

View Article and Find Full Text PDF

In this review, we highlight recent research and current ideas on how to improve the efficiency of the light reactions of photosynthesis in crops. We note that the efficiency of photosynthesis is a balance between how much energy is used for growth and the energy wasted or spent protecting the photosynthetic machinery from photodamage. There are reasons to be optimistic about enhancing photosynthetic efficiency, but many appealing ideas are still on the drawing board.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncst7ar12shj68t5umeoaqt7d7re2uioc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once