Publications by authors named "Peter J Mumby"

Coral populations are being progressively thinned by climate change, which elevates the risk of reproductive failure from Allee effects during fertilization. Studies have shown that fertilization success improves during more intense and synchronized spawning, but the local dependence of fertilization on coral density remains unknown in wild populations. Here, we measure the fertilization success of individual colonies of the common table coral, in Palau, Micronesia.

View Article and Find Full Text PDF
Article Synopsis
  • Marine heatwaves are becoming more frequent and severe due to climate change, putting reef-building corals at risk of mass mortality and increased selective pressure.
  • A new eco-evolutionary metapopulation model shows that while corals can somewhat adapt, they will face significant population declines from heatwaves over the next few decades.
  • To help sensitive coral populations survive beyond 2050, it's crucial to dramatically reduce greenhouse gas emissions and limit global warming to 2°C instead of the projected 3°C.
View Article and Find Full Text PDF

Disturbances on coral reefs-which are increasing in intensity and frequency-generate material legacies. These are commonly in the form of rubble beds, which depend on rubble stability and/or binding to facilitate coral recruitment and recovery. Yet, our understanding of rubble stability and binding dynamics across environmental gradients is limited.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change may worsen sediment and salinity stresses in inshore turbid habitats, impacting coral fertilization and development.
  • In experiments, the fertilization rate of Acropora tumida dropped by 50% under combined sediment and salinity stress, while Platygyra carnosa showed no significant impact.
  • Abnormal embryonic development increased significantly for both species under stress, and A. tumida faced 50% larval mortality at a lower sediment concentration, raising concerns about coral survival in turbid environments.
View Article and Find Full Text PDF

Natural systems exhibit high spatial variability across multiple scales. Models that can capture ecosystem dynamics across space and time by explicitly incorporating major biological mechanisms are crucial, both for management and for ecological insight. In the case of coral reef systems, much focus has been on modelling variability between reefs, despite substantial variability also existing within reefs.

View Article and Find Full Text PDF

Outbreaks of corallivorous Crown of Thorns Starfish (Acanthaster spp.; CoTS) cause substantial coral mortality throughout the Indo-Pacific, particularly on the Great Barrier Reef (GBR). Refining CoTS population density modelling and understanding the disparities between real-world observations and model predictions is crucial for developing effective control strategies.

View Article and Find Full Text PDF

Climate change projections for coral reefs are founded exclusively on sea surface temperatures (SST). While SST projections are relevant for the shallowest reefs, neglecting ocean stratification overlooks the striking differences in temperature experienced by deeper reefs for all or part of the year. Density stratification creates a buoyancy barrier partitioning the upper and lower parts of the water column.

View Article and Find Full Text PDF

Marine protected areas (MPAs) are widely used for ocean conservation, yet the relative impacts of various types of MPAs are poorly understood. We estimated impacts on fish biomass from no-take and multiple-use (fished) MPAs, employing a rigorous matched counterfactual design with a global dataset of >14,000 surveys in and around 216 MPAs. Both no-take and multiple-use MPAs generated positive conservation outcomes relative to no protection (58.

View Article and Find Full Text PDF

Disturbance-induced rubble accumulations are described as "killing fields" on coral reefs as coral recruits suffer high post-settlement mortality, creating a bottleneck for reef recovery. The increasing frequency of coral bleaching events, that can generate rubble once coral dies, has heightened concerns that rubble beds will become more widespread and persistent. But we currently lack the tools to predict where rubble is most likely to accumulate.

View Article and Find Full Text PDF

Recurrent mass bleaching events threaten the future of coral reefs. To persist under climate change, corals will need to endure progressively more intense and frequent marine heatwaves, yet it remains unknown whether their thermal tolerance can keep pace with warming. Here, we reveal an emergent increase in the thermal tolerance of coral assemblages at a rate of 0.

View Article and Find Full Text PDF

Global environmental change is happening at unprecedented rates. Coral reefs are among the ecosystems most threatened by global change. For wild populations to persist, they must adapt.

View Article and Find Full Text PDF

Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 ('Life below Water') of the United Nations. SDG 14 seeks to secure marine sustainability by 2030.

View Article and Find Full Text PDF

Projections of coral reefs under climate change have important policy implications, but most analyses have focused on the intensification of climate-related physical stress rather than explicitly modelling how coral populations respond to stressors. Here, we analyse the future of the Great Barrier Reef (GBR) under multiple, spatially realistic drivers which allows less impacted sites to facilitate recovery. Under a Representative Concentration Pathway (RCP) 2.

View Article and Find Full Text PDF

As marine species adapt to climate change, their heat tolerance will likely be under strong selection. Yet trade-offs between heat tolerance and other life history traits could compromise natural adaptation or assisted evolution. This is particularly important for ecosystem engineers, such as reef-building corals, which support biodiversity yet are vulnerable to heatwave-induced mass bleaching and mortality.

View Article and Find Full Text PDF

Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species' interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa are greatest in dead coral and rubble, which are suggested to fuel food webs from the bottom up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels.

View Article and Find Full Text PDF

Boat anchoring is common at coral reefs that have high economic or social value, but anchoring has received relatively little attention in reef resilience studies. We developed an individual-based model of coral populations and simulated the effects of anchor damage over time. The model allowed us to estimate the carrying capacity of anchoring for four different coral assemblages and different starting levels of coral cover.

View Article and Find Full Text PDF

Mangrove forests store high amounts of carbon, protect communities from storms, and support fisheries. Mangroves exist in complex social-ecological systems, hence identifying socioeconomic conditions associated with decreasing losses and increasing gains remains challenging albeit important. The impact of national governance and conservation policies on mangrove conservation at the landscape-scale has not been assessed to date, nor have the interactions with local economic pressures and biophysical drivers.

View Article and Find Full Text PDF

Biodiversity of terrestrial and marine ecosystems, including coral reefs, is dominated by small, often cryptic, invertebrate taxa that play important roles in ecosystem structure and functioning. While cryptofauna community structure is determined by strong small-scale microhabitat associations, the extent to which ecological and environmental factors shape these communities are largely unknown, as is the relative importance of particular microhabitats in supporting reef trophodynamics from the bottom up. The goal of this study was to address these knowledge gaps, provided coral reefs are increasingly exposed to multiple disturbances and environmental gradients that influence habitat complexity, condition and ecosystem functioning.

View Article and Find Full Text PDF

Increases in the magnitude, frequency, and duration of warm seawater temperatures are causing mass coral mortality events across the globe. Although, even during the most extensive bleaching events, some reefs escape exposure to severe stress, constituting potential refugia. Here, we identify present-day climate refugia on the Great Barrier Reef (GBR) and project their persistence into the future.

View Article and Find Full Text PDF

Recent warm temperatures driven by climate change have caused mass coral bleaching and mortality across the world, prompting managers, policymakers, and conservation practitioners to embrace restoration as a strategy to sustain coral reefs. Despite a proliferation of new coral reef restoration efforts globally and increasing scientific recognition and research on interventions aimed at supporting reef resilience to climate impacts, few restoration programs are currently incorporating climate change and resilience in project design. As climate change will continue to degrade coral reefs for decades to come, guidance is needed to support managers and restoration practitioners to conduct restoration that promotes resilience through enhanced coral reef recovery, resistance, and adaptation.

View Article and Find Full Text PDF

AbstractCrown-of-thorns sea stars ( sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of sp.

View Article and Find Full Text PDF
Article Synopsis
  • Tropical coral reefs are highly vulnerable to climate change impacts, making it crucial to limit global warming to 1.5°C as proposed in the Paris Agreement.
  • Recent climate models from the Intergovernmental Panel on Climate Change (CMIP6) show that sticking to the 1.5°C target significantly reduces severe bleaching events in the Great Barrier Reef compared to a 2°C scenario.
  • Projections suggest that by 2080, under high-emission pathways, the frequency and intensity of thermal stress on coral reefs could increase dramatically, emphasizing the urgent need for low emissions to protect these vital ecosystems.
View Article and Find Full Text PDF