Publications by authors named "Peter J M Rottier"

Bird to human transmission of high pathogenicity avian influenza virus (HPAIV) poses a significant risk of triggering a flu pandemic in the human population. Therefore, vaccination of susceptible poultry during an HPAIV outbreak might be the best remedy to prevent such transmissions. To this end, suitable formulations and an effective mass vaccination method that can be translated to field settings needs to be developed.

View Article and Find Full Text PDF

Avian coronavirus infectious bronchitis virus (IBV) infects domestic fowl, resulting in respiratory disease and causing serious losses in unprotected birds. Its control is mainly achieved by using live attenuated vaccines. Here we explored the possibilities for rationally attenuating IBV to improve our knowledge regarding the function of IBV accessory proteins and for the development of next-generation vaccines with the recently established reverse genetic system for IBV H52 based on targeted RNA recombination and selection of recombinant viruses in embryonated eggs.

View Article and Find Full Text PDF

The ability to infect and replicate in monocytes/macrophages is a critically distinguishing feature between the two feline coronavirus (FCoV) pathotypes: feline enteric coronavirus (FECV; low-virulent) and feline infectious peritonitis virus (FIPV; lethal). Previously, by comparing serotype II strains FIPV 79-1146 and FECV 79-1683 and recombinant chimeric forms thereof in cultured feline bone marrow macrophages, we mapped this difference to the C-terminal part of the viral spike (S) protein (S2). In view of the later identified diagnostic difference in this very part of the S protein of serotype I FCoV pathotypes, the present study aimed to further define the contribution of the earlier observed ten amino acids difference to the serotype II virus phenotype in macrophages.

View Article and Find Full Text PDF

Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens, causing severe economic losses in poultry industry worldwide. Live attenuated viruses are widely used in both the broiler and layer industry because of their efficacy and ability to be mass applied. Recently, we established a novel reverse genetics system based on targeted RNA recombination to manipulate the genome of IBV strain H52.

View Article and Find Full Text PDF

Background: Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens that causes severe economic losses in the poultry industry worldwide. Major advances in the study of the molecular biology of IBV have resulted from the development of reverse genetics systems for the highly attenuated, cell culture-adapted, IBV strain Beaudette. However, most IBV strains, amongst them virulent field isolates, can only be propagated in embryonated chicken eggs, and not in continuous cell lines.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV) causes enteric disease in pigs, resulting in significant economic losses to the swine industry worldwide. Current vaccination approaches against this emerging coronavirus are only partially effective, though natural infection protects pigs against reinfection and provides lactogenic immunity to suckling piglets. The viral spike (S) glycoprotein, responsible for receptor binding and cell entry, is the major target for neutralizing antibodies.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV) is an emerging pathogenic coronavirus that causes a significant economic burden to the swine industry. The virus infects the intestinal epithelium and causes villous atrophy, resulting in diarrhea and dehydration. Interaction of the viral spike (S) surface glycoprotein - through its S1 subunit - with the host cell receptor is the first step in infection and the main determinant for virus tropism.

View Article and Find Full Text PDF

Highly pathogenic H5N1 avian influenza A viruses display a remarkable genetic and antigenic diversity. We examined to what extent genetic distances between several H5N1 viruses from different clades correlate with antigenic differences and vaccine performance. H5-specific antisera were generated, and cross-reactivity and antigenic distances between 12 different viruses were determined.

View Article and Find Full Text PDF

The tremendous pandemic potential of coronaviruses was demonstrated twice in the last 15 years by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. Despite their biomedical importance, coronavirus S glycoproteins have proven difficult targets for structural characterization, precluding high-resolution studies of the biologically relevant trimer.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV), a coronavirus discovered more than 40 years ago, regained notoriety recently by its devastating outbreaks in East Asia and the Americas, causing substantial economic losses to the swine husbandry. The virus replicates extensively and almost exclusively in the epithelial cells of the small intestine resulting in villus atrophy, malabsorption and severe diarrhea. Cellular entry of this enveloped virus is mediated by the large spike (S) glycoprotein, trimers of which mediate virus attachment to the target cell and subsequent membrane fusion.

View Article and Find Full Text PDF
Article Synopsis
  • Antibodies against the fusion protein of respiratory syncytial virus (RSV) are key for immune protection, but research on their levels induced by infection or vaccination is limited.
  • A study analyzed antibody levels in human sera and vaccinated/infected cotton rats, finding significant variability in individual responses, with strong neutralization linked to the prefusion antigenic site Ø.
  • Vaccination with formalin-inactivated RSV led to the production of weakly neutralizing antibodies, especially against postfusion sites, which may explain the low effectiveness and safety issues observed in past vaccine trials.
View Article and Find Full Text PDF

The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. S also contains the principal antigenic determinants and is the target of neutralizing antibodies.

View Article and Find Full Text PDF

The respiratory syncytial virus (RSV) fusion protein F is considered an attractive vaccine candidate especially in its prefusion conformation. We studied whether recombinant soluble RSV F proteins could be stabilized in a prefusion-like conformation by mutation of heptad repeat B (HRB). The results show that soluble, trimeric, non-cleaved RSV F protein, produced by expression of the furin cleavage site-mutated F ectodomain extended with a GCN4 trimerization sequence, is efficiently recognized by pre- as well as postfusion-specific antibodies.

View Article and Find Full Text PDF

The emerging porcine epidemic diarrhea virus (PEDV) requires trypsin supplementation to activate its S protein for membrane fusion and virus propagation in cell culture. By substitution of a single amino acid in the S protein, we created a recombinant PEDV with an artificial furin protease cleavage site N terminal of the putative fusion peptide (PEDV-SFCS). PEDV-SFCS exhibited trypsin-independent cell-cell fusion and was able to replicate in culture cells independently of trypsin, though to low titer.

View Article and Find Full Text PDF

In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.

View Article and Find Full Text PDF

Over the last 2 decades, yeast two-hybrid became an invaluable technique to decipher protein-protein interaction networks. In the field of virology, it has proven instrumental to identify virus-host interactions that are involved in viral embezzlement of cellular functions and inhibition of immune mechanisms. Here, we present a yeast two-hybrid protocol that has been used in our laboratory since 2006 to search for cellular partners of more than 300 viral proteins.

View Article and Find Full Text PDF

Unlabelled: In addition to transporting ions, the multisubunit Na(+),K(+)-ATPase also functions by relaying cardiotonic steroid (CTS)-binding-induced signals into cells. In this study, we analyzed the role of Na(+),K(+)-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection. As controls, the vesicular stomatitis virus (VSV) and influenza A virus (IAV) were included.

View Article and Find Full Text PDF

Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion.

View Article and Find Full Text PDF

Studies of viral entry into host cells often rely on the detection of post-entry parameters, such as viral replication or the expression of a reporter gene, rather than on measuring entry per se. The lack of assays to easily detect the different steps of entry severely hampers the analysis of this key process in virus infection. Here we describe novel, highly adaptable viral entry assays making use of minimal complementation of the E.

View Article and Find Full Text PDF

Rabies is a disease characterized by an invariably lethal encephalitis of viral origin that can be controlled by preventive vaccination programs of wildlife, domestic animals and humans in areas with a high risk of exposure. Currently available vaccines are expensive, cumbersome to produce and require intensive immunization and booster schemes to induce and maintain protective immunity. In the present study, we describe the development of candidate recombinant subunit rabies vaccines based on the glycoprotein G of the prototype rabies virus (RABV-G) expressed either as a monomer (RABV-mG) or in its native trimeric configuration (RABV-tG), with or without Matrix-M™ adjuvant.

View Article and Find Full Text PDF

Coronaviruses replicate their genomes in association with rearranged cellular membranes. The coronavirus nonstructural integral membrane proteins (nsps) 3, 4 and 6, are key players in the formation of the rearranged membranes. Previously, we demonstrated that nsp3 and nsp4 interact and that their co-expression results in the relocalization of these proteins from the endoplasmic reticulum (ER) into discrete perinuclear foci.

View Article and Find Full Text PDF

Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV).

View Article and Find Full Text PDF

Unlabelled: Enveloped viruses carry highly specialized glycoproteins that catalyze membrane fusion under strict spatial and temporal control. To prevent premature activation after biosynthesis, viral class I fusion proteins adopt a locked conformation and require proteolytic cleavage to render them fusion-ready. This priming step may occur during virus exit from the infected cell, in the extracellular milieu or during entry at or in the next target cell.

View Article and Find Full Text PDF

Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site.

View Article and Find Full Text PDF