Publications by authors named "Peter J Intile"

The microbiota-the mixture of microorganisms in the intestinal tract of animals-plays an important role in host biology. Bacteriophages are a prominent, though often overlooked, component of the microbiota. The mechanisms that phage use to infect susceptible cells associated with animal hosts, and the broader role they could play in determining the substituents of the microbiota, are poorly understood.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa relies upon type IV pili (Tfp) for host colonization and virulence. Tfp are retractile surface appendages that promote adherence to host tissue and mediate twitching motility, a form of surface-associated translocation. Tfp are composed of a major structural pilin protein (PilA), several less abundant, fiber-associated pilin-like proteins (FimU, PilV, PilW, PilX, and PilE), and a pilus-associated tip adhesin and surface sensor (PilY1).

View Article and Find Full Text PDF

strain MR-1, a facultative anaerobe and model organism for dissimilatory metal reduction, uses a periplasmic flavocytochrome, FccA, both as a terminal fumarate reductase and as a periplasmic electron transfer hub for extracellular respiration of a variety of substrates. It is currently unclear how maturation of FccA and other periplasmic flavoproteins is achieved, specifically in the context of flavin cofactor loading, and the fitness cost of flavin secretion has not been quantified. We demonstrate that deletion of the inner membrane flavin adenine dinucleotide (FAD) exporter Bfe results in a 23% slower growth rate than that of the wild type during fumarate respiration and an 80 to 90% loss in fumarate reductase activity.

View Article and Find Full Text PDF

Extracellular electron transfer (EET) is a strategy for respiration in which electrons generated from metabolism are moved outside the cell to a terminal electron acceptor, such as iron or manganese oxide. EET has primarily been studied in two model systems, and Metal reduction has also been reported in numerous microorganisms, including spp., which are ubiquitous found in aquatic ecosystems, with some species capable of pathogenesis in humans and fish.

View Article and Find Full Text PDF

Unlabelled: The Pseudomonas aeruginosa cyclic AMP (cAMP)-Vfr system (CVS) is a global regulator of virulence gene expression. Regulatory targets include type IV pili, secreted proteases, and the type III secretion system (T3SS). The mechanism by which CVS regulates T3SS gene expression remains undefined.

View Article and Find Full Text PDF

Unlabelled: In Salmonella enterica, the reversible lysine acetylation (RLA) system is comprised of the protein acetyltransferase (Pat) and sirtuin deacetylase (CobB). RLA controls the activities of many proteins, including the acetyl coenzyme A (acetyl-CoA) synthetase (Acs), by modulating the degree of Acs acetylation. We report that IolR, a myo-inositol catabolism repressor, activates the expression of genes encoding components of the RLA system.

View Article and Find Full Text PDF

Unlabelled: The Pseudomonas aeruginosa type III secretion system (T3SS) is a primary virulence factor important for phagocytic avoidance, disruption of host cell signaling, and host cell cytotoxicity. ExsA is the master regulator of T3SS transcription. The expression, synthesis, and activity of ExsA is tightly regulated by both intrinsic and extrinsic factors.

View Article and Find Full Text PDF

Pseudomonas aeruginosa causes chronic airway infections in cystic fibrosis (CF) patients. A classic feature of CF airway isolates is the mucoid phenotype. Mucoidy arises through mutation of the mucA anti-sigma factor and subsequent activation of the AlgU regulon.

View Article and Find Full Text PDF

Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors.

View Article and Find Full Text PDF