Sebum is a complex mixture of skin lipids responsible for lubrication, moisture retention and skin protection from external factors such as bacteria and fungi. The physicochemical properties of natural sebum are not well understood and are not easily accessible. Artificial sebum is widely used for sebum-related research such as dermal bioaccessibility, fingerprint production, dermatology, removal and sebum studies.
View Article and Find Full Text PDFControlling starch digestion in high glycaemic index staple foods such as white rice is of interest as it has been associated with reduced risk for conditions such as obesity and type-2 diabetes mellitus. Addition of hydrocolloids has been proposed to reduce the rate of post-prandial glucose by controlling the rate of starch hydrolysis. In this work, the potential of a range of hydrocolloids to modify starch digestibility when added (at 1 % maximum concentration) during cooking of white rice was first investigated.
View Article and Find Full Text PDFIn the present work, we developed an effective antimicrobial surface film based on sustainable microfibrillated cellulose. The resulting porous cellulose thin film is barely noticeable to human eyes due to its submicrometer thickness, of which the surface coverage, porosity, and microstructure can be modulated by the formulations and the coating process. Using goniometers and a quartz crystal microbalance, we observed a threefold reduction in water contact angles and accelerated water evaporation kinetics on the cellulose film (more than 50% faster than that on a flat glass surface).
View Article and Find Full Text PDFObjective: The nature and magnitude of molecular interactions on hair surfaces underpin the design of formulated products, of which the application involves a competitive adsorption process between cationic surfactants, fatty alcohols and surface actives such as silicone. The knowledge of molecular interaction with hair surface will not only provide insight on the surface binding affinity but also offer an effective methodology in characterizing surface deposits.
Methods: Untreated and chemically treated hair samples were treated with either conditioner chassis alone (gel network) or conditioner chassis plus silicone (chassis/TAS).
Physicochemical transformation of coffee during roasting depends on the applied time-temperature profile (i.e., rate of heat transfer), with heat transfer phenomena governed by particle dynamics.
View Article and Find Full Text PDFThe synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system. Under the same preparation conditions, low viscosity PDMS produced emulsions containing small droplets, which resulted in a uniform surface deposition profile, whilst high viscosity PDMS resulted in a localised deposition profile. Interfacial phenomena such as wicking and penetration of PDMS into cotton fabrics were found to be viscosity-dependent, which agrees with the surface deposition data.
View Article and Find Full Text PDFTo evaluate the role of common substrates in the transmission of respiratory viruses, in particular SARS-CoV-2, uniformly distributed microdroplets (approx. 10 µm diameter) of artificial saliva were generated using an advanced inkjet printing technology to replicate the aerosol droplets and subsequently deposited on five substrates, including glass, polytetrafluoroethylene, stainless steel, acrylonitrile butadiene styrene and melamine. The droplets were found to evaporate within a short timeframe (less than 3 s), which is consistent with previous reports concerning the drying kinetics of picolitre droplets.
View Article and Find Full Text PDFMolecular details concerning the induction phase of milk fouling on stainless steel at an elevated temperature range were established to better understand the effect of temperature on surface fouling during pasteurization. The liquid-solid interface that replicates an industrial heat exchanger (≤75°C), including four stages (preheating, heating, holding, and cooling), was investigated using both a quartz crystal microbalance (QCM-D) and a customized flow cell. We found that the milk fouling induction process is rate-limited by the synergistic effects of bulk reactions, mass transfer, and surface reactions, all of which are controlled by both liquid and surface temperatures.
View Article and Find Full Text PDFWe show that a surface-grafted polymer brush, 1--butyl-3-vinyl imidazolium bromide-based poly(ionic liquids), is able to reduce the interfacial friction by up to 66% and 42% in dodecane and water, respectively. AFM-based force spectroscopy reveals that the polymer brush adopts distinctively different interfacial conformations: swollen in water but collapsed in dodecane. Minimal surface adhesion was observed with both polymer conformations, which can be attributed to steric repulsion as the result of a swollen conformation in water or surface solvation when the hydrophobic fraction of the polymer was exposed to the dodecane.
View Article and Find Full Text PDFInstant coffee manufacture involves the aqueous extraction of soluble coffee components followed by drying to form a soluble powder. Loss of volatile aroma compounds during concentration through evaporation can lower product quality. One method of retaining aroma is to steam-strip volatiles from the coffee and add them back to a concentrated coffee solution before the final drying stage.
View Article and Find Full Text PDFA comprehensive mathematical model of the digestive processes in humans could allow for better design of functional foods which may play a role in stemming the prevalence of food related diseases around the world. This work presents a mathematical model for a nutrient based feedback mechanism controlling gastric emptying, which has been identified by numerous researchers. The model also takes into account the viscosity of nutrient meals upon gastric secretions and emptying.
View Article and Find Full Text PDFPorous solid materials commonly undergo coating processes during their manufacture, where liquids are put in contact with solids for different purposes. The study of liquid penetration in porous substrates is a process of high relevance in activities in several industries. In particular, powder detergents are subject to coating with surfactants that will boost their performance, although this may affect the flowability and even cause caking of the particulate material, which can be detrimental to consumer acceptance.
View Article and Find Full Text PDFThe influence of both the nature of the surfactant and surfactant concentration on the processes of droplet break-up and coalescence in the formation of decane-in-water nano-emulsions in a high-pressure homogenizer was investigated. Emulsions were produced using a Christison Scientific M110-S microfluidiser with an impinging jet high-shear chamber. For all six surfactants studied (Tween 20, Tween 80, Brij 96v, sucrose monolaurate, sucrose monomyristate and sucrose monopalmate), the droplet size decreased with increasing surfactant concentration reaching a limiting droplet size at a surfactant concentration of 15 mM.
View Article and Find Full Text PDFHigh-pressure, high-temperature (HPHT) processing is effective for microbial spore inactivation using mild preheating, followed by rapid volumetric compression heating and cooling on pressure release, enabling much shorter processing times than conventional thermal processing for many food products. A computational thermal fluid dynamic (CTFD) model has been developed to model all processing steps, including the vertical pressure vessel, an internal polymeric carrier, and food packages in an axis-symmetric geometry. Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C.
View Article and Find Full Text PDFBiotechnol Lett
February 2003
A novel method to examine the morphology and structure of fungal hyphae in solid pastes used for the production of meat alternative product is presented. A sample of fermentation broth was fluorescently stained with Calcofluor White and added back to the broth, mixed and then a paste made using ultra-filtration. Fibre visualisation was by fluorescence microscopy and quantification by manual image analysis.
View Article and Find Full Text PDF