Publications by authors named "Peter J Felock"

A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

View Article and Find Full Text PDF

MK-6186 is a novel nonnucleoside reverse transcriptase inhibitor (NNRTI) which displays subnanomolar potency against wild-type (WT) virus and the two most prevalent NNRTI-resistant RT mutants (K103N and Y181C) in biochemical assays. In addition, it showed excellent antiviral potency against K103N and Y181C mutant viruses, with fold changes (FCs) of less than 2 and 5, respectively. When a panel of 12 common NNRTI-associated mutant viruses was tested with MK-6186, only 2 relatively rare mutants (Y188L and V106I/Y188L) were highly resistant, with FCs of >100, and the remaining viruses showed FCs of <10.

View Article and Find Full Text PDF

Studies were conducted to investigate mutation pathways among subtypes A, B, and C of human immunodeficiency virus type 1 (HIV-1) during resistance selection with nonnucleoside reverse transcriptase inhibitors (NNRTIs) in cell culture under low-multiplicity of infection (MOI) conditions. The results showed that distinct pathways were selected by different virus subtypes under increasing selective pressure of NNRTIs. F227C and Y181C were the major mutations selected by MK-4965 in subtype A and C viruses during resistance selection.

View Article and Find Full Text PDF

Biaryl ethers were recently reported as potent NNRTIs. Herein, we disclose a detailed effort to modify the previously reported compound 1. We have designed and synthesized a series of novel pyrazole derivatives as a surrogate for pyrazolopyridine motif that were potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells.

View Article and Find Full Text PDF

AIDS is produced by HIV-induced infections. HIV integrase is an important enzyme as it is critical for the integration of the HIV genome into that of the host cell. This complex process is exclusively carried out by a viral enzyme not found in the host cell.

View Article and Find Full Text PDF

Integramide A is a 16-amino acid peptide inhibitor of the enzyme HIV-1 integrase. We have recently reported that the absolute stereochemistries of the dipeptide sequence near the C terminus are L-Iva(14)-D-Iva(15). Herein, we describe the syntheses of the natural compound and its D-Iva(14)-L-Iva(15) diastereomer, and the results of their chromatographic/mass spectrometric analyses.

View Article and Find Full Text PDF

Biaryl ethers were recently reported as potent NNRTIs. Herein we disclose a detailed SAR study that led to the biaryl ether 6. This compound possessed excellent potency against WT RT and key clinically observed RT mutants and had an excellent pharmacokinetic profile in rats, dogs, and rhesus macaques.

View Article and Find Full Text PDF

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key elements of multidrug regimens, called HAART (Highly Active Antiretroviral Therapy), that are used to treat HIV-1 infections. Elucidation of the structure-activity relationships of the thiocarbamate moiety of the previous published lead compound 2 provided a series of novel tetrahydroquinoline derivatives as potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells. The SAR optimization, mutation profiles, preparation of compounds, and pharmacokinetic profile of compounds are described.

View Article and Find Full Text PDF

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations.

View Article and Find Full Text PDF

HIV-1 integrase catalyzes the insertion of viral DNA into the genome of the host cell. Integrase inhibitor N-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide selectively inhibits the strand transfer process of integration. 4-Substituted pyrrolidinones possessing various groups on the pyrrolidinone nitrogen were introduced at the 5-position of the naphthyridine scaffold.

View Article and Find Full Text PDF

A series of 10-hydroxy-7,8-dihydropyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-1,9(2H,6H)-diones was synthesized and tested for their inhibition of HIV-1 replication in cell culture. Structure-activity studies indicated that high antiviral potency against wild-type virus as well as viruses containing integrase mutations that confer resistance to three different structural classes of integrase inhibitors could be achieved by incorporation of small aliphatic groups at certain positions on the core template. An optimal compound from this study, 16, inhibits integrase strand-transfer activity with an IC(50) value of 10 nM, inhibits HIV-1 replication in cell culture with an IC(95) value of 35 nM in the presence of 50% normal human serum, and displays modest pharmacokinetic properties in rats (i.

View Article and Find Full Text PDF

Using a combination of traditional Medicinal Chemistry/SAR analysis, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad antiviral activity against a number of key clinical mutations.

View Article and Find Full Text PDF

HIV integrase is one of the three enzymes encoded by HIV genome and is essential for viral replication, but integrase inhibitors as marketed drugs have just very recently started to emerge. In this study, we show the evolution from the N-methylpyrimidinone structure to bicyclic pyrimidinones. Introduction of a suitably substituted amino moiety modulated the physical-chemical properties of the molecules and conferred nanomolar activity in the inhibition of spread of HIV-1 infection in cell culture.

View Article and Find Full Text PDF

A series of 4-oxo-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-2-carboxamides was synthesized and tested for their inhibition of HIV-1 integrase catalytic activity and HIV-1 replication in cells. Structure-activity studies around lead compound 5 indicated that a coplanar relationship of metal-binding heteroatoms provides optimal binding to the integrase active site. Identification of potency-enhancing substituents and adjustments in lipophilicity provided 17b which inhibits integrase-catalyzed strand transfer with an IC(50) value of 74 nM and inhibits HIV-1 replication in cell culture in the presence of 50% normal human serum with an IC(95) value of 63 nM.

View Article and Find Full Text PDF

A series of potent novel 8-hydroxy-3,4-dihydropyrrolo[1,2-a]pyrazine-1(2H)-one HIV-1 integrase inhibitors was identified. These compounds inhibited the strand transfer process of HIV-1 integrase and viral replication in cells. Compound 12 is active against replication of HIV-1 in cell culture with a CIC(95) of 0.

View Article and Find Full Text PDF

A series of potent novel dihydroxypyridopyrazine-1,6-dione HIV-1 integrase inhibitors was identified. These compounds inhibited the strand transfer process of HIV-1 integrase and viral replication in cells. Compound 6 is active against replication of HIV with a CIC(95) of 0.

View Article and Find Full Text PDF

A 1,6-naphthyridine inhibitor of HIV-1 integrase has been discovered with excellent inhibitory activity in cells, good pharmacokinetics, and an excellent ability to inhibit virus with mutant enzyme.

View Article and Find Full Text PDF

A series of 5-amino derivatives of 8-hydroxy[1,6]-naphthyridine-7-carboxamide exhibiting sub-micromolar potency against replication of HIV-1 in cell culture was identified. One of these analogs, compound 12, displayed excellent pharmacokinetic properties when dosed orally in rats and in monkeys. This compound was demonstrated to be efficacious against replication of simian-human immunodeficiency virus (SHIV) 89.

View Article and Find Full Text PDF

Introduction of a 5,6-dihydrouracil functionality in the 5-position of N-(4-fluorobenzyl)-8-hydroxy-[1,6]naphthyridine-7-carboxamide 1 led to a series of highly active HIV-1 integrase inhibitors. These compounds displayed low nanomolar activity in inhibiting both the strand transfer process of HIV-1 integrase and viral replication in cells. Compound 11 is a 150-fold more potent antiviral agent than 1, with a CIC(95) of 40 nM in the presence of human serum.

View Article and Find Full Text PDF

The increasing incidence of resistance to current HIV-1 therapy underscores the need to develop antiretroviral agents with new mechanisms of action. Integrase, one of three viral enzymes essential for HIV-1 replication, presents an important yet unexploited opportunity for drug development. We describe here the identification and characterization of L-870,810, a small-molecule inhibitor of HIV-1 integrase with potent antiviral activity in cell culture and good pharmacokinetic properties.

View Article and Find Full Text PDF

HIV-1 integrase is a critical enzyme for replication of HIV, and its inhibition is one of the most promising new drug targets for anti-retroviral therapy with potentially significant advantages over existing therapies. In this Note, the isolation, structure elucidation, and absolute stereochemistry of integrasone, a novel polyketide, derived from an unidentified sterile mycelium have been described. This bicyclic dihydroxy epoxide lactone inhibited the strand transfer reaction of HIV-1 integrase with an IC(50) of 41 microM.

View Article and Find Full Text PDF

HIV-1 integrase is one of the three enzymes that are critical for replication and spread of HIV and its inhibition is one of the most promising new drug targets for anti-retroviral therapy with potential advantage over existing therapies. This paper describes the isolation and structure elucidation of exophillic acid, a novel dimeric 2,4-dihydroxy alkyl benzoic acid, derived from Exophiala pisciphila, a fungus isolated from a soil sample collected in Georgia, USA. Exophillic acid (1) and aquastatin A (2), a related compound, inhibited the strand transfer reaction of HIV-1 integrase with IC50 values of 68 and 50 microM, respectively.

View Article and Find Full Text PDF

HIV-1 integrase is a critical enzyme for replication of HIV, and its inhibition is one of the most promising new drug strategies for anti-retroviral therapy, with potentially significant advantages over existing therapies. In this report, a series of HIV-1 inhibitors isolated from the organic extract of fermentations from terrestrial fungi is described. These fungal species, belonging to a variety of genera, were collected from throughout the world following the strict guidelines of Rio Convention on Biodiversity.

View Article and Find Full Text PDF

HIV-1 integrase is a critical enzyme for replication of HIV, and its inhibition has the potential to lead to an anti-retroviral therapy that has advantages over existing therapies. Cytosporic acid (1) is a polyketide-derived novel natural product that was isolated from a fermentation broth of the filamentous fungus Cytospora sp. collected from Puerto Rico.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: