Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with complex carcinogenesis. Although there has been significant progress in the treatment of HCC over the past decades, drug resistance to chemotherapy remains a major obstacle in its successful management. In this study, we were able to reduce chemoresistance in cisplatin-resistant HepG2 cells by either silencing the expression of transglutaminase type 2 (TG2) using siRNA or by the pre-treatment of cells with the TG2 enzyme inhibitor cystamine.
View Article and Find Full Text PDFThe results presented herein show that at clinically relevant concentrations (0-30 µM), the well-tolerated phytochemical berberine (BER) induces cell death in cultured human hepatocarcinoma (HepG2) cells as a model for liver cancer, primarily via apoptosis. Similar, relatively low-concentration single treatments using the structurally related phytochemical resveratrol (RSV), had little or no effect on cell viability but inhibited the cell cycle, while simultaneously increasing the strength of cellular adhesion. When used in combination, an RSV/BER cotreatment appeared to retain the ability of a single RSV treatment to increase cellular adhesion, but also induced a massive loss in hepatocarcinoma cellular viability, inducing cell death in more than 90% of cells.
View Article and Find Full Text PDFTransglutaminase 2 (TG2) is a ubiquitous multifunctional enzyme whose expression has been found to be altered in numerous studies of apoptosis and cell survival; its activity has been found to be increased in many types of cancer, where it is often over-expressed. Cisplatin has long been used as an effective therapeutic drug to treat numerous cancers. Although its activity is based on cross-linking of DNA, cisplatin may also operate via other mechanisms that involve modification and alteration in the activity of protein and RNA modulators of the cell cycle and apoptotic processes; these mechanisms are less well characterised.
View Article and Find Full Text PDFThe melanocortin-1 receptor (MC1R) is a key regulator of mammalian pigmentation. Melanism in the grey squirrel is associated with an eight amino acid deletion in the mutant melanocortin-1 receptor with 24 base pair deletion (MC1RΔ24) variant. We demonstrate that the MC1RΔ24 exhibits a higher basal activity than the wildtype MC1R (MC1R-wt).
View Article and Find Full Text PDFSequence variations in the melanocortin 1 receptor (MC1R) gene are associated with melanism in many different species of mammals, birds, and reptiles. The gray squirrel (Sciurus carolinensis), found in the British Isles, was introduced from North America in the late 19th century. Melanism in the British gray squirrel is associated with a 24-bp deletion in the MC1R.
View Article and Find Full Text PDF