The chemical modification of protein thiols by reduction and alkylation is common in the preparation of proteomic samples for analysis by mass spectrometry (MS). Modification at other functional groups has received less attention in MS-based proteomics. Amine modification (Lys, N-termini) by reductive dimethylation or by acylation (e.
View Article and Find Full Text PDFElectrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer.
View Article and Find Full Text PDFA sequential reaction methodology is employed for the complete derivatization of protein thiols, amines, and acids in high purity under denaturing conditions. Following standard thiol alkylation, protein amines are modified via reductive methylation with formaldehyde and pyridine-borane. Protein acids are subsequently amidated under buffered conditions in DMSO using the coupling reagent (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate.
View Article and Find Full Text PDFAn engineered, orthogonal ligand receptor pair has been exploited as a method to covalently label fusion proteins with small molecule probes in live cells.
View Article and Find Full Text PDFLabeling reagents that differ only in their isotopic composition offer a powerful approach to achieve relative quantification between samples by ESI-MS. Heavy and light isotopic forms of cholamine, which contain a positively charged quaternary ammonium group, were synthesized and tested as new labeling reagents for the relative quantification of carboxylic acid-containing metabolites, specifically fatty acids. The positive charge on cholamine ensures that the labeled product is also positively charged under all LC-MS conditions, regardless of mobile-phase pH.
View Article and Find Full Text PDFIn an effort to extend the peptide aptamer approach, we have developed a scaffold protein that allows small molecule ligand control over the presentation of a peptide aptamer. This scaffold, a fusion of three protein domains, FKBP12, FRB, and GST, presents a peptide linker region for target protein binding only in the absence of the small molecule Rapamycin or other non-immunosuppressive Rapamycin derivatives. Here we describe the characterization of ligand-regulated peptide aptamers that interact with and inhibit the 5'-AMP-activated protein kinase (AMPK).
View Article and Find Full Text PDFA powerful approach to relative quantification by mass spectrometry is to employ labeling reagents that target specific functional groups in molecules of interest. A quantitative comparison of two or more samples may be readily accomplished by using a chemically identical but isotopically distinct labeling reagent for each sample. The samples may then be combined, subjected to purification steps, and mass analyzed.
View Article and Find Full Text PDF[reaction: see text] We report the development of a safety-catch photolabile linker that allows the light-directed synthesis and spatially selective photorelease of oligonucleotides from microarrays. The linker remains stable to light during DNA synthesis, and is activated for photorelease after acidic hydrolysis. We demonstrate that the photoreleased oligonucleotides can be amplified by PCR to produce double stranded DNA.
View Article and Find Full Text PDFWe engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein.
View Article and Find Full Text PDFInvestigations on the scope and utility of exo-mechanism proximity-accelerated reactions in engineered receptor-ligand systems are reported. We synthesized a series of electrophilic cyclosporin (CsA) derivatives by varying electrophiles and linker lengths, prepared a series of nucleophilic cysteine mutations on the surface of cyclophilin A (Cyp), and examined their reactivity and specificity in proximity-accelerated reactions. Acrylamide and epoxide electrophiles afforded useful reactivity and high specificity for alkylation of engineered receptors in Jurkat cell extracts.
View Article and Find Full Text PDFAlthough efficient methods exist to assemble synthetic oligonucleotides into genes and genomes, these suffer from the presence of 1-3 random errors/kb of DNA. Here, we introduce a new method termed consensus shuffling and demonstrate its use to significantly reduce random errors in synthetic DNA. In this method, errors are revealed as mismatches by re-hybridization of the population.
View Article and Find Full Text PDFWe describe the development of photolabile protecting groups based on the 3,4,5-trimethoxyphenacyl group (TMP). Orthogonal safety-catches were created by introducing an acid-activatible dimethyl ketal (AA-TMP) and an oxidatively activatible 1,3-dithiane (OA-TMP) into the photolabile TMP group. We demonstrate the application of these protecting groups in light-directed synthesis of small molecule microarrays with diversity elements radially attached to a hydroxyproline scaffold.
View Article and Find Full Text PDFA basic problem in gene synthesis is the acquisition of many short oligonucleotide sequences needed for the assembly of genes. Photolithographic methods for the massively parallel synthesis of high-density oligonucleotide arrays provides a potential source, once appropriate methods have been devised for their elution in forms suitable for enzyme-catalyzed assembly. Here, we describe a method based on the photolithographic synthesis of long (>60mers) single-stranded oligonucleotides, using a modified maskless array synthesizer.
View Article and Find Full Text PDFWe describe the first solid-phase synthesis of dihydrovirginiamycin S(1), a member of the streptogramin B family of antibiotics, which are nonribosomal-peptide natural products produced by Streptomyces. These compounds, along with the synergistic group A components, are "last line of defense" antimicrobial agents for the treatment of life-threatening infections such as vancomycin-resistant enterococci. The synthesis features an on-resin cyclization and is designed to allow production of streptogramin B analogues with diversification at positions 1', 1, 2, 3, 4, and 6.
View Article and Find Full Text PDF[reaction: see text] A novel safety-catch linker for the solid-phase synthesis of small-molecule libraries containing electrophilic reactive groups has been developed. Upon cleavage from solid support, the linker generates a Michael acceptor (an acrylamide) on each library member. Utilization of a two-resin system in the final cleavage step provides crude products in high purity, allowing direct use in biological assays following filtration and evaporation.
View Article and Find Full Text PDFHigh-performance mass spectrometry is providing new experimental windows into the enzymology of natural product biosynthesis. The first quantitative assessments of covalently attached biosynthetic intermediates promise to shine new light on template-directed biosynthesis.
View Article and Find Full Text PDFA new approach for creating allele-specific inhibitors is demonstrated. In this approach, a receptor and ligand are engineered to contain complementary reactive groups that form a covalent bond via a proximity-accelerated reaction upon formation of the receptor-ligand complex, irreversibly modulating the biological function of the receptor. This approach is demonstrated in the cyclophilin-cyclosporin receptor-ligand system by introducing thiol and acrylamide functional groups in the receptor and ligand, respectively.
View Article and Find Full Text PDF