Publications by authors named "Peter J Appleford"

Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes.

View Article and Find Full Text PDF

Background: C. elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain function, yet, surprisingly, they are often long-lived, a property that has offered unique insights into the molecular mechanisms of aging. In this study, we examine the phenotypic consequences of reducing the expression of the respiratory chain complex assembly factors sft-1 (homologous to human SURF1) and oxa-1 (homologous to human OXA1) by RNA interference (RNAi).

View Article and Find Full Text PDF

Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx) as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia.

View Article and Find Full Text PDF

Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFβ, respectively) are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1.

View Article and Find Full Text PDF

The T-box transcription factor mab-9 has been shown to be required for the correct fate of the male-specific blast cells B and F, normal posterior hypodermal morphogenesis, and for the correct axon migration of motor neurons that project circumferential commissures to dorsal muscles. In this study, an RNAi screen designed to identify upstream transcriptional regulators of mab-9 showed that silencing of unc-4 (encoding a paired-class homeodomain protein) increases mab-9::gfp expression in the nervous system, specifically in posterior DA motor neurons. Over-expression of unc-4 from a heat-shock promoter has the opposite effect, causing repression of mab-9 in various cells.

View Article and Find Full Text PDF

The RUNX family of transcriptional regulators are well conserved throughout the animal kingdom, from the simple nematode worm Caenorhabditis elegans to vertebrates. Interest in the RUNX genes emerged principally as a result of the finding that chromosomal translocations disrupting RUNX protein function are observed in a large number of patients suffering with acute myeloid leukemia (AML). In the 20 years that RUNX genes have been under investigation, they have emerged as central players in the control of developmental decisions between proliferation and differentiation in a wide variety of biological situations.

View Article and Find Full Text PDF

We have identified Conserved Non-coding Elements (CNEs) in the regulatory region of Caenorhabditis elegans and Caenorhabditis briggsae mab-9, a T-box gene known to be important for cell fate specification in the developing C. elegans hindgut. Two adjacent CNEs (a region 78 bp in length) are both necessary and sufficient to drive reporter gene expression in posterior hypodermal cells.

View Article and Find Full Text PDF

The genome of Caenorhabditis elegans encodes multiple homologues of the two major families of mammalian equilibrative and concentrative nucleoside transporters. As part of a programme aimed at understanding the biological rationale underlying the multiplicity of eukaryote nucleoside transporters, we have now demonstrated that the nematode genes ZK809.4 (ent-1) and K09A9.

View Article and Find Full Text PDF

Genome sequence analyses predict many proteins that are structurally related to proteases but lack catalytic residues, thus making functional assignment difficult. We show that one of these proteins (ACN-1), a unique multi-domain angiotensin-converting enzyme (ACE)-like protein from Caenorhabditis elegans, is essential for larval development and adult morphogenesis. Green fluorescent protein-tagged ACN-1 is expressed in hypodermal cells, the developing vulva, and the ray papillae of the male tail.

View Article and Find Full Text PDF