Plant litter decomposition is a key ecosystem process in carbon and nutrient cycling, and is heavily affected by changing climate. While the direct effects of drought on decomposition are widely studied, in order to better predict the overall drought effect, indirect effects associated with various drought-induced changes in ecosystems should also be quantified. We studied the effect of an extreme (5-month) experimental drought on decomposition, and if this effect varies with two dominant perennial grasses, plant parts (leaves vs.
View Article and Find Full Text PDFThe last few years have witnessed the emergence of alternative measures to control plant parasitic nematodes (PPNs). We briefly reviewed the potential of compost and the direct or indirect roles of soil-dwelling organisms against PPNs. We compiled and assessed the most intensively researched factors of suppressivity.
View Article and Find Full Text PDFTo better understand the nanosize-relevant toxic effects and underlying mechanisms, N-acetylcysteine (NAC), as a mitigation agent, an ionic form of Zn (ZnCl), and the binary mixture of ZnO with different particle sizes (15 nm and 140 nm), was used in toxicity assays with the nematode Panagrellus redivivus. The ZnCl concentrations were applied to show the amount of dissolved Zn ions present in the test system. Reactive oxygen species (ROS) measuring method was developed to fit the used test system.
View Article and Find Full Text PDFNanoparticulate ZnO is one of the most commonly applied nanomaterials. As ZnO is more soluble than many other oxide nanoparticles, its toxicity beyond the nanoparticle-specific effects can be attributed to the dissolved ionic zinc. The investigation of uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi, which was used in previous studies as a biological model organism, was aimed.
View Article and Find Full Text PDF