We report on the photophysical properties of three dyads that combine a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (bodipy, BDP) and a mercaptopyrene (SPyr) dye ligand at a Pt(PEt3)2 fragment. σ-Bonding of the dyes to the Pt ion promotes intersystem crossing (ISC) via the external heavy atom effect. The coupling of efficient ISC with charge-transfer from the electron-rich mercaptopyrene to the electron-accepting BDP ligand (PB-CT) gives rise to a multitude of (potentially) emissive states.
View Article and Find Full Text PDFThe Pt(bodipy)-(mercaptopyrene) dyad BPtSPyr shows four different emissions: intense near-infrared phosphorescence (Φph up to 15%) from a charge-transfer state pyrS˙+-Pt-BDP˙-, additional fluorescence and phosphorescence emissions from the 1ππ* and 3ππ* states of the bodipy ligand at r.t., and phosphorescence from the pyrene 3ππ* and the bodipy 3ππ* states in a glassy matrix at 77 K.
View Article and Find Full Text PDFWe report on the platinum complexes trans-Pt(BODIPY)(8-ethynyl-BODIPY)(PEt) (EtBPtB) and trans-Pt(BODIPY)(4-ethynyl-1,8-naphthalimide)(PR) (R = Et, EtNIPtB-1; R = Ph, EtNIPtB-2), which all contain two different dye ligands that are connected to the platinum atom by a direct σ bond. The molecular structures of all complexes were established by X-ray crystallography and show that the different dye ligands are in either a coplanar or an orthogonal arrangement. π-stacking and several CH···F and short CH···π interactions involving protons at the phosphine substituents lead to interesting packing motifs in the crystal.
View Article and Find Full Text PDFWe report on five new complexes with the general formula trans-Pt(BODIPY)X(PEt3)2 (), where the platinum(ii) ion is σ-bonded to a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl (BODIPY) and an anionic ligand X(-) (X(-) = Cl(-), I(-), NO2(-), NCS(-), CH3(-)). All five complexes were characterized by multinuclear NMR, electronic absorption and luminescence spectroscopy and by X-ray diffraction analysis. Four of these complexes show efficient intersystem crossing (ISC) from an excited singlet state to a BODIPY-centred T1 state and exhibit dual fluorescence and phosphorescence emission from the BODIPY ligand.
View Article and Find Full Text PDF