Publications by authors named "Peter I Darroch"

Herein we describe detailed characterization of four common mutations (L302P, H421Y, R496L and DeltaR608) within the acid sphingomyelinase (ASM) gene causing types A and B Niemann-Pick disease (NPD). In vitro and in situ enzyme assays revealed marked deficiencies of ASM activity in NPD cell lines homoallelic for each mutation, although Western blotting and fluorescent microscopy showed that the mutant ASM polypeptides were expressed at normal levels and trafficked to lysosomes. Co-immunoprecipitation of the polypeptides with the ER chaperone, BiP, confirmed these findings, as did in vitro expression of the mutant cDNAs in reticulocyte lysates.

View Article and Find Full Text PDF

We report the synthesis and characterization of a novel thiourea derivative of sphingomyelin (AD2765). In vitro assays using pure enzyme and/or cell extracts revealed that this compound inhibited the hydrolysis of BODIPY-conjugated or 14C-labeled sphingomyelin by acid sphingomyelinase and Mg2+-dependent neutral sphingomyelinase. Studies in normal human skin fibroblasts further revealed that AD2765 was taken up by cells and inhibited the hydrolysis of BODIPY-conjugated sphingomyelin in situ.

View Article and Find Full Text PDF

The biological actions of the lysolipid agonists sphingosine 1-phosphate and lysophosphatidic acid, in addition to other bioactive lipid phosphates such as phosphatidic acid and ceramide 1-phosphate, can be influenced by a family of lipid phosphate phosphatases (LPP), including LPP1, LPP2, LPP3, the Drosophila homologues Wunen (Wun) and Wunen2 (Wun2) and sphingosine 1-phosphate phosphatases 1 and 2 (SPP1, SPP2). This review describes the characteristic of these enzymes and their potential physiological roles in regulating intracellular and extracellular actions and amounts of these lipids in addition to the involvement of these phosphatases in development.

View Article and Find Full Text PDF