Glycerol, a by-product of biodiesel production, could be converted into various value-added products. This work focuses on its dehydrogenation to dihydroxyacetone (DHA), which is mainly used in the cosmetics industry. While several methods have been employed for DHA production, some necessitate catalysts and involve harsh reaction conditions as well as long reaction times.
View Article and Find Full Text PDFThis work features a new corona discharge plasma technology for de-inking yellow, blue, and red colors on various papers. This work was developed to minimize the chemical and environmental impacts of de-inking processes. A nonchemical contribution, operating at room temperature and atmospheric pressure, reduces the environmental impact of the process.
View Article and Find Full Text PDFAdsorption is regarded as an efficient method to eliminate per- and polyfluoroalkyl substances from an aqueous solution. In the present investigation, an adsorbent based on rice husks (RHs) was successfully prepared by phosphoric acid (PA) activation and dielectric barrier discharge (DBD) plasma treatment, and it was used to adsorb perfluorooctanoic acid (PFOA) from water. The electrodes employed in the experiment were planar type.
View Article and Find Full Text PDFLithium phosphorus oxynitride (LiPON) is an amorphous solid electrolyte that has been extensively studied over the last three decades. Despite the promise of pairing it with various electrode materials, LiPON's rigidity and air sensitivity set limitations to understanding its intrinsic properties. Here we report a methodology to synthesize LiPON in a free-standing form that manifests remarkable flexibility and a Young's modulus of ∼33 GPa.
View Article and Find Full Text PDFAbove-ground nuclear explosions that interact with the surface of the earth entrain materials from the surrounding environment, influencing the resulting physical and chemical evolution of the fireball, which can affect the final chemical phase and mobility of hazardous radionuclides that are dispersed in the environment as fallout particles. The interaction of iron with a nuclear explosion is of specific interest due to the potential for iron to act as a redox buffer and because of the likelihood of significant masses of metals to be present in urban environments. We investigated fallout from a historic surface interacting nuclear explosion conducted on a steel tower and report the discovery of widespread and diverse iron-rich micro-structures preserved within the samples, including crystalline dendrites and micron-scale iron-rich spheres with liquid immiscibility textures.
View Article and Find Full Text PDFFatty acid methyl esters (FAMEs) are sustainable biofuel that can alleviate high oil costs and environmental impacts of petroleum-based fuel. A modified 1200 W high-efficiency food blender was employed for continuous transesterification of various refined vegetable oils and waste cooking oil (WCO) using sodium hydroxide as a homogeneous catalyst. The following factors have been investigated on their effects on FAME yield: baffles, reaction volume, total reactant flow rate, methanol-oil molar ratio, catalyst concentration and reaction temperature.
View Article and Find Full Text PDFWhile application of clustering algorithms to atom probe tomography data have enabled quantification of solute clusters in terms of number density, size, and subcomposition there exist other properties (e.g., volume, surface area, and composition) that are better determined by defining an interface between the cluster and the surrounding matrix.
View Article and Find Full Text PDFAdvancement of optoelectronic and high-power devices is tied to the development of wide band gap materials with excellent transport properties. However, bipolar doping (n-type and p-type doping) and realizing high carrier density while maintaining good mobility have been big challenges in wide band gap materials. Here P-type and n-type conductivity was introduced in β-GaO, an ultra-wide band gap oxide, by controlling hydrogen incorporation in the lattice without further doping.
View Article and Find Full Text PDFAtom probe tomography (APT) is a powerful technique to characterize buried three-dimensional nanostructures in a variety of materials. Accurate characterization of those nanometer-scale clusters and precipitates is of great scientific significance to understand the structure-property relationships and the microstructural evolution. The current widely used cluster analysis method, a variant of the density-based spatial clustering of applications with noise algorithm, can only accurately extract clusters of the same atomic density, neglecting several experimental realities, such as density variations within and between clusters and the nonuniformity of the atomic density in the APT reconstruction itself (e.
View Article and Find Full Text PDFLarge, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled.
View Article and Find Full Text PDFPorous materials with ligament sizes in the submicrometer to nanometer regime have a high potential for future applications such as catalysts, actuators, or radiation tolerant materials, which require properties like high strength-to-weight ratio, high surface-to-volume ratio, or large interface density as for radiation tolerance. The objective of this work was to manufacture ultra-fine porous copper, to determine the thermo-mechanical properties, and to elucidate the deformation behavior at room as well as elevated temperatures via nanoindentation. The experimental approach for manufacturing the foam structures used high pressure torsion, subsequent heat treatments, and selective dissolution.
View Article and Find Full Text PDFA fabrication methodology for 120 nm-diameter, <111>-oriented single crystalline Cu nanopillars which are uniformly implanted with helium is described. Uniaxial compression experiments reveal that their yield strength is 30% higher than that of their unimplanted counterparts. This study sheds light on the fundamental understanding of the deformation mechanism of irradiated metallic nanocrystals, and has important implications for the interplay between irradiation-induced defects and the external sample dimensions in the nanoscale.
View Article and Find Full Text PDF