The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies.
View Article and Find Full Text PDFBackground: Short-term exposure particulate matter with a diameter of 10 µm or less (PM) and fine particulate matter (PM) has been associated with heart rate variability (HRV), but exposure to ultrafine particles (UFP) has been less well examined. We investigated the associations between the HRV outcomes and short-term exposure to UFP, PM and PM among school-aged children and seniors.
Methods: CorPuScula (Coronary, Pulmonary and Sanguis) is a longitudinal, repeated-measure panel study conducted in 2000-2002 in Munich, Germany including 52 seniors (58-94 years old) with 899 observations and 50 children (6-10 years old) with 925 observations.
Characterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing treatment. To satisfy these requirements, we proposed a new method employing the sequential combination of two imaging modalities, i.
View Article and Find Full Text PDFStudies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform.
View Article and Find Full Text PDFPreliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration.
View Article and Find Full Text PDFComets are considered the most primitive planetary bodies in our Solar System. ESA's Rosetta mission to Jupiter family comet 67P/Churyumov-Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In a previous paper (Hoppe et al.
View Article and Find Full Text PDFThe extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: O-rich (associated with refractory inclusions) and O-poor (associated with chondrules). Both the O-rich and O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward.
View Article and Find Full Text PDFInitial analyses showed that asteroid Ryugu's composition is close to CI (Ivuna-like) carbonaceous chondrites -the chemically most primitive meteorites, characterized by near-solar abundances for most elements. However, some isotopic signatures (e.g.
View Article and Find Full Text PDFLittle is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids.
View Article and Find Full Text PDFMusculoskeletal disorders (MSDs) are the main cause of pain leading to high economic burden and psychosocial disadvantages. In addition, psychological stress impacts the overall health as well as the quality of life. Elementary school teachers clearly are a cohort with a high risk of MSDs and stress.
View Article and Find Full Text PDFLaryngorhinootologie
July 2022
Focused ultrasound is becoming more and more important when it comes to its application in thyroid diseases due to the development of echotherapy. This article provides insights in the application of echotherapy and the treatment process as well as clinical experiences and future perspectives. Studies have already been able to show significant volume reductions and improvement of symptoms after the treatment of benign and symptomatic thyroid nodules.
View Article and Find Full Text PDFCarbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples.
View Article and Find Full Text PDFWe report on the detection of primordial organic matter within the carbonaceous chondrite Maribo that is distinct from the majority of organics found in extraterrestrial samples. We have applied high-spatial resolution techniques to obtain C-N isotopic compositions, chemical, and structural information of this material. The organic matter is depleted in N relative to the terrestrial value at around δN ~ -200‰, close to compositions in the local interstellar medium.
View Article and Find Full Text PDFComets are considered the most primitive planetary bodies in our Solar System, i.e., they should have best preserved the solid components of the matter from which our Solar System formed.
View Article and Find Full Text PDFThermal effects of the environment are the most prominent environmental influences on the human body. Keeping the body core temperature in a narrow optimum range is the dominating physiological process. Thus, assessing thermal environments has been a major field in biometeorology for many decades, which is also reflected in the number of respective articles and their citations.
View Article and Find Full Text PDFIn the Western world and developing countries, the number one causes of mortality and morbidity result from cardiovascular diseases. Cardiovascular diseases represent a wide range of pathologies, including myocardial infarction, peripheral vascular disease, and cerebrovascular disease, which are all linked by a common cause - atherosclerosis. Currently, the diagnosis of atherosclerosis is in most cases established at the end stage of the disease, when patients are administered to the emergency room due to a myocardial infarction or stroke.
View Article and Find Full Text PDFIn this study, we demonstrate that Nano Secondary Ion Mass Spectrometry (NanoSIMS) can be used to differentiate different nitrogen-containing species commonly observed in atmospheric aerosol particles with micrometer or submicrometer spatial resolution, on the basis of the relative intensity of secondary ion signals, both in negative and positive secondary ion mode, without the need to chemically or physically separate the samples. Compounds tested include nitrate, nitrite, ammonium salts, urea, amino acids, sugars, organic acids, amides, triazine, imidazole, protein, and biological tissue. We show that NO2(-) secondary ions are unique to the decomposition of nitrate and nitrite salts, whereas NH4(+) secondary ions are unique to samples containing ammonium ions, with low signal intensities observed from amino groups but none from biological tissue.
View Article and Find Full Text PDFObjective: Dopamine transporter single-photon emission computed tomography (SPECT) with I-FP-CIT is used widely in the diagnosis of clinically uncertain parkinsonian syndromes. In terms of the evaluation of FP-CIT SPECT, some practice guidelines state that visual interpretation alone is generally sufficient in clinical patient care, whereas other guidelines consider semiquantitative analysis of striatal dopamine transporter availability mandatory. This discrepancy might be because of a relative lack of widely available display tools for FP-CIT SPECT.
View Article and Find Full Text PDFOur assessment of the multi-year overwintering study by Pilling et al. (2013) revealed a number of major deficiencies regarding the study design, the protocol and the evaluation of results. Colonies were exposed for short periods per year to flowering oilseed rape and maize grown from thiamethoxam-coated seeds.
View Article and Find Full Text PDFIsotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C.
View Article and Find Full Text PDFSeven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory.
View Article and Find Full Text PDFNutritional interactions between corals and symbiotic dinoflagellate algae lie at the heart of the structural foundation of coral reefs. Whilst the genetic diversity of Symbiodinium has attracted particular interest because of its contribution to the sensitivity of corals to environmental changes and bleaching (i.e.
View Article and Find Full Text PDFThis study presents high-precision isotope ratio-mass spectrometric measurements of isotopic fractionation during oxidation of SO2 by OH radicals in the gas phase and H2O2 and transition metal ion catalysis (TMI-catalysis) in the aqueous phase. Although temperature dependence of fractionation factors was found to be significant for H2O2 and TMI-catalyzed pathways, results from a simple 1D model revealed that changing partitioning between oxidation pathways was the dominant cause of seasonality in the isotopic composition of sulfate relative to SO2. Comparison of modeled seasonality with observations shows the TMI-catalyzed oxidation pathway is underestimated by more than an order of magnitude in all current atmospheric chemistry models.
View Article and Find Full Text PDFGlobal sulfate production plays a key role in aerosol radiative forcing; more than half of this production occurs in clouds. We found that sulfur dioxide oxidation catalyzed by natural transition metal ions is the dominant in-cloud oxidation pathway. The pathway was observed to occur primarily on coarse mineral dust, so the sulfate produced will have a short lifetime and little direct or indirect climatic effect.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
August 2010