Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites.
View Article and Find Full Text PDFCytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing NAD(P)H-dependent oxidative biotransformation of a vast array of natural and xenobiotic compounds. Many eu- and prokaryotic members of this class of monooxygenases display complex non-Michaelis-Menten saturation kinetics, suggestive of homo-/heterotropic cooperativity arising from substrate-/effector-induced allosteric interactions. Here, the paradigm of multiple-ligand occupancy of the catalytic pocket in combination with enzyme oligomerization provides the most favored explanations for the atypical kinetic patterns.
View Article and Find Full Text PDFCytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2013
Fungi belong to the large kingdom of lower eukaryotic organisms encompassing yeasts along with filamentous and dimorphic members. Microbial P450 enzymes have contributed to exploration of and adaptation to diverse ecological niches such as conversion of lipophilic compounds to more hydrophilic derivatives or degradation of a vast array of environmental toxicants. To better understand diversification of the catalytic behavior of fungal P450s, detailed insight into the molecular machinery steering oxidative attack on the distinctly structured endogenous and xenobiotic substrates is of preeminent interest.
View Article and Find Full Text PDFJ Inorg Biochem
October 2011
Among eukaryotic P450s, the greatest expansion has been in insects, providing useful model systems for the study of enzyme evolution in response to natural and anthropogenic pressures such as the chemical warfare against plant toxins and synthetic insecticides. To better understand diversification of the catalytic properties in the various P450 clades, insight into the molecular principles governing biotransformation of the array of endogenous and exogenous compounds is of paramount importance. Based on a general, CYP102A1-related construct, the majority of prospective substrate-docking residues were found to cluster near the distal hemeface within the six known substrate recognition sites (SRSs) made up by the α-helical B′, F, G and I tetrad as well as the B′-C turn and strands of certain β-sheets.
View Article and Find Full Text PDFIn view of the pivotal role played by the diversity of fatty acid-derived oxy-products in a vast array of physiological processes, precise knowledge about the molecular principles dictating substrate specificity and regioselectivity in P450-catalyzed oxidative attack on the distinctly structured carbon chains of the monocarboxylic acids is of paramount importance. Based on a general, CYP102A1-related construct, the majority of prospective key determinants participating in fatty acid recognition/binding were found to cluster near the distal heme face made up by the helical B', F, G and I tetrad as well as the B'-C interhelical loop and certain beta-sheet segments. Most of the contact sites examined show a frequency of conservation <10%, hinting at the requirement of some degree of conformational flexibility.
View Article and Find Full Text PDFThe high plasticity of the active-site cavity of cytochromes P450, permitting reactivity toward a vast array of compounds, makes these enzymes attractive targets for biotechnological application. Escalating attention in this area is driven by remarkable progress in the rational design by DNA shuffling of self-sufficient, multi-domain P450/electron donor constructs simplifying the composition of biocatalytic systems. Moreover, versatile approaches were undertaken to supersede the well-established, NAD(P)H-steered proteinaceous redox chains by cost-effective alternative electron transfer conduits constituted of organometallic mediators or photoactivatable redox triggers.
View Article and Find Full Text PDFCurr Drug Metab
August 2007
Based on initial studies with bacterial CYP101A1, a popular concept emerged predicting that substrate-induced low-to-high spin conversion of P450s is universally associated with shifts of the midpoint potential to a more positive value to maximize rates of electron transfer and metabolic turnover. However, evaluation of the plethora of observations with pro- and eukaryotic hemoproteins suggests a caveat as to generalization of this principle. Thus, some P450s are inherently high-spin, so that there is no need for a supportive substrate-triggered impulse to electron flow.
View Article and Find Full Text PDFThe widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s.
View Article and Find Full Text PDFCytochrome P450 enzymes promote a number of oxidative biotransformations including the hydroxylation of unactivated hydrocarbons. Whereas the long-standing consensus view of the P450 mechanism implicates a high-valent iron-oxene species as the predominant oxidant in the radicalar hydrogen abstraction/oxygen rebound pathway, more recent studies on isotope partitioning, product rearrangements with 'radical clocks', and the impact of threonine mutagenesis in P450s on hydroxylation rates support the notion of the nucleophilic and/or electrophilic (hydro)peroxo-iron intermediate(s) to be operative in P450 catalysis in addition to the electrophilic oxenoid-iron entity; this may contribute to the remarkable versatility of P450s in substrate modification. Precedent to this mechanistic concept is given by studies with natural and synthetic P450 biomimics.
View Article and Find Full Text PDFIndirect evidence for the participation of cytochrome P450 (P450) in the microsomal N-oxygenation of primary and N-substituted amine functions is presented by studies employing diagnostic modifiers of the hemoprotein system as well as immunochemical approaches. Experiments with recombinant hemoproteins or isozymes purified from the tissues of various animal species support the results obtained by the inhibitor assays. Amine substrates and the redox proteins of the microsomal electron transfer chain reveal to be mutually beneficial in interactions with P450s.
View Article and Find Full Text PDF