ACS Appl Electron Mater
November 2022
The growth parameters for epitaxial growth of graphene on silicon carbide (SiC) have been the focus of research over the past few years. However, besides the standard growth parameters, the influence of the substrate pretreatment and properties of the underlying SiC wafer are critical parameters for optimizing the quality of monolayer graphene on SiC. In this systematic study, we show how the surface properties and the pretreatment determine the quality of monolayer graphene using polymer-assisted sublimation growth (PASG) on SiC.
View Article and Find Full Text PDFThe rapid development of display technologies has raised interest in arrays of self-emitting, individually controlled light sources atthe microscale. Gallium nitride (GaN) micro-light-emitting diode (LED) technology meets this demand. However, the current technology is not suitable for the fabrication of arrays of submicron light sources that can be controlled individually.
View Article and Find Full Text PDFWe report on the fabrication of large-area all-carbon capacitors (ACCs) composed of multilayer stacks of carbon nanomembranes as dielectrics sandwiched between two carbon-based conducting electrodes. Carbon nanomembranes (CNMs) are prepared from aromatic self-assembled monolayers of phenylthiol homologues via electron irradiation. Two types of carbon-based electrode materials, (1) trilayer graphene made by chemical vapor deposition and mechanical stacking and (2) pyrolyzed graphitic carbon made by pyrolysis of cross-linked aromatic molecules, have been employed for this study.
View Article and Find Full Text PDFWe have investigated the electronic transport through 3 μm long, 45 nm diameter InAs nanowires comprising a 5 nm long InP segment as electronic barrier. After assembly of 12 nm long oligo(phenylene vinylene) derivative molecules onto these InAs/InP nanowires, we observed a pronounced, nonlinear I-V characteristic with significantly increased currents of up to 1 μA at 1 V bias, for a back-gate voltage of 3 V. As supported by our model calculations based on a nonequilibrium Green Function approach, we attribute this effect to charge transport through those surface-bound molecules, which electrically bridge both InAs regions across the embedded InP barrier.
View Article and Find Full Text PDFGetting into films: semiconductor thin films containing magnetic or plasmonic metal nanoparticles are key materials for the development of high-efficiency solar cells, bright light-emitting diodes, and new magnetoelectric devices. The catalytically driven chemical vapor deposition offers a unique way to combine deposition of the metallic nanoparticles with that of functional oxides to produce such films.
View Article and Find Full Text PDFWe investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material quality. In contrast to other approaches, we employed deep etched silicon substrates to achieve a controlled pillar growth.
View Article and Find Full Text PDF