We report on the separation and on-line distinction of (R,S)-3,5-dinitrobenzoyl leucine (DNB-Leu) enantiomers with non-aqueous capillary electrophoresis (CE) and Fourier transform infrared (FT-IR) spectroscopic detection using O-(tert-butyl carbamoyl) quinine (tBuCQN) as the chiral selector (CS). Due to stereoselective intermolecular interactions--particularly ionic interactions, hydrogen bonding, and pi-pi-interactions--the enantiomers undergo enantioselective complex and ion-pair formation, respectively, with the CS enabling CE separation and direct identification with FT-IR detection. Especially the (S)-enantiomer of the analyte shows significant changes in the mid-infrared region upon complexation, allowing for a clear spectral distinction between both enantiomers.
View Article and Find Full Text PDFWe report on the use of time-resolved Fourier transform infrared spectroscopy (FT-IR) to study chemically induced conformational changes of proteins using the example of ubiquitin. For this purpose a micromachined mixer is coupled to a conventional IR transmission cell with a pathlength of 25 microm and operated in both the continuous and the stopped-flow mode. This experimental set-up allows the elucidation of reaction pathways in the time frame of about 500 milliseconds to seconds with little reagent consumption and low pressure.
View Article and Find Full Text PDFMicellar electrokinetic chromatography (MEKC) was successfully coupled to Fourier transform infrared (FTIR) detection, using a micromachined IR-transparent flow cell with an optical path length of 15 micro m for the on-line detection of five neutral analytes. Tight connections between the flow cell and the capillaries were achieved by creating a small O-ring of UV-curing epoxy adhesive on the sharply cut capillary ends. The background electrolyte consisted of 15 mM phosphate buffer at pH 7 and 40 mM sodium dodecyl sulfate (SDS).
View Article and Find Full Text PDFThe coupling of Fourier transform infrared (FT-IR) spectroscopy as a new on-line detection principle in capillary electrophoresis (CE) is presented. To overcome the problem of total IR absorption by the fused-silica capillaries that are normally employed in CE separations, a micromachined IR-transparent flow cell was constructed. The cell consists of two IR-transparent CaF2 plates separated by a polymer coating and a titanium layer producing an IR detection window, 150 microm wide and 2 mm long, with a path length of 15 microm.
View Article and Find Full Text PDF