Publications by authors named "Peter Heutink"

Arrayed CRISPR libraries extend the scope of gene-perturbation screens to non-selectable cell phenotypes. However, library generation requires assembling thousands of vectors expressing single-guide RNAs (sgRNAs). Here, by leveraging massively parallel plasmid-cloning methodology, we show that arrayed libraries can be constructed for the genome-wide ablation (19,936 plasmids) of human protein-coding genes and for their activation and epigenetic silencing (22,442 plasmids), with each plasmid encoding an array of four non-overlapping sgRNAs designed to tolerate most human DNA polymorphisms.

View Article and Find Full Text PDF

Mutations in GBA1 encoding the lysosomal enzyme β-glucocerebrosidase (GCase) are among the most prevalent genetic susceptibility factors for Parkinson's disease (PD), with 10-30% of carriers developing the disease. To identify genetic modifiers contributing to the incomplete penetrance, we examined the effect of 1634 human transcription factors (TFs) on GCase activity in lysates of an engineered human glioblastoma line homozygous for the pathogenic GBA1 L444P variant. Using an arrayed CRISPR activation library, we uncovered 11 TFs as regulators of GCase activity.

View Article and Find Full Text PDF

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2.

Objectives: Our goal was to investigate the effects of genetic variants on risk and time to LID.

View Article and Find Full Text PDF

Background: Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at a global scale.

Objective: To identify the multi-ancestry spectrum of monogenic PD.

Methods: The first systematic approach to embrace monogenic PD worldwide, The Michael J.

View Article and Find Full Text PDF

Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases.

View Article and Find Full Text PDF

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes.

View Article and Find Full Text PDF

Background: Dystonia is one of the most common movement disorders. To date, the genetic causes of dystonia in populations of European descent have been extensively studied. However, other populations, particularly those from the Middle East, have not been adequately studied.

View Article and Find Full Text PDF
Article Synopsis
  • The iDA Project is creating 200 special, lab-grown cells from people who take part in a study about Alzheimer’s disease.
  • These cells include a mix of male and female donors, different stages of the disease, and various backgrounds.
  • The project will share all the cells and information about them for others to use.
View Article and Find Full Text PDF

Open science initiatives that harness human genomic and genetic data could help increase the likelihood of successfully developing new drugs for neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including and .

Objectives: To investigate the effects of genetic variants on risk and time to LID.

View Article and Find Full Text PDF

Frontotemporal lobar degeneration (FTLD) includes a heterogeneous group of disorders pathologically characterized by the degeneration of the frontal and temporal lobes. In addition to major genetic contributors of FTLD such as mutations in , , and , recent work has identified several epigenetic modifications including significant differential DNA methylation in , and loci. As aging remains one of the major risk factors for FTLD, we investigated the presence of accelerated epigenetic aging in FTLD compared to controls.

View Article and Find Full Text PDF

The Monogenic Network of the Global Parkinson's Genetics Program (GP2) aims to create an efficient infrastructure to accelerate the identification of novel genetic causes of Parkinson's disease (PD) and to improve our understanding of already identified genetic causes, such as reduced penetrance and variable clinical expressivity of known disease-causing variants. We aim to perform short- and long-read whole-genome sequencing for up to 10,000 patients with parkinsonism. Important features of this project are global involvement and focusing on historically underrepresented populations.

View Article and Find Full Text PDF
Article Synopsis
  • GWAS of Alzheimer's disease have mostly focused on individuals of European descent, overlooking genetic differences in other global populations.
  • This research conducted a large multi-ancestry GWAS meta-analysis, identifying two new disease-related genetic loci on chromosome 3 and refining nine loci linked to Alzheimer’s risk.
  • The study underscores the significance of including diverse ancestries in genetic research to better understand risk factors for Alzheimer's disease and related dementias.
View Article and Find Full Text PDF

Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) and FTLD with tau-positive inclusions (FTLD-tau) are the most common, representing about 90% of the cases. Although alterations in DNA methylation have been consistently associated with neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, little is known for FTLD and its heterogeneous subgroups and subtypes.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered that medin co-localizes with amyloid-β deposits in both Alzheimer's patients and transgenic mice, and reducing medin levels in mice decreases amyloid-β deposition significantly.
  • Increased levels of MFG-E8 and medin in vascular cells correlate with greater cognitive decline in Alzheimer's patients, suggesting medin may be a potential therapeutic target to prevent vascular damage and cognitive impairment caused by amyloid-β.
View Article and Find Full Text PDF
Article Synopsis
  • Mitochondria play a role in Parkinson's disease, particularly in cognitive decline, but their impact on the disease's progression is still not fully understood.
  • A study involving 4,064 Parkinson's patients found that certain mitochondrial haplogroups, specifically the super macro-haplogroup J, T, U, were linked to a 41% lower risk of cognitive decline compared to the H haplogroup.
  • The research also identified a specific mitochondrial DNA variant (m.2706A>G) that slowed cognitive decline, while no significant relationship was found between mitochondrial haplogroups and motor progression.
View Article and Find Full Text PDF

The transcriptional activity of Transposable Elements (TEs) has been involved in numerous pathological processes, including neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The TE expression analysis from short-read sequencing technologies is, however, challenging due to the multitude of similar sequences derived from singular TEs subfamilies and the exaptation of TEs within longer coding or non-coding RNAs. Specialised tools have been developed to quantify the expression of TEs that either relies on probabilistic re-distribution of multimapper count fractions or allow for discarding multimappers altogether.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is genetically associated with the H1 haplotype of the MAPT 17q.21.31 locus, although the causal gene and variants underlying this association have not been identified.

View Article and Find Full Text PDF

Frontotemporal dementia is characterized by progressive atrophy of frontal and/or temporal cortices at an early age of onset. The disorder shows considerable clinical, pathological, and genetic heterogeneity. Here we investigated the proteomic signatures of frontal and temporal cortex from brains with frontotemporal dementia due to GRN and MAPT mutations to identify the key cell types and molecular pathways in their pathophysiology.

View Article and Find Full Text PDF

An intronic (GC) expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia primarily through gain-of-function mechanisms: the accumulation of sense and antisense repeat RNA foci and dipeptide repeat (DPR) proteins (poly-GA/GP/GR/PA/PR) translated from repeat RNA. To therapeutically block this pathway, we screen a library of 1,430 approved drugs and known bioactive compounds in patient-derived induced pluripotent stem cell-derived neurons (iPSC-Neurons) for inhibitors of DPR expression. The clinically used guanosine/cytidine analogs decitabine, entecavir, and nelarabine reduce poly-GA/GP expression, with decitabine being the most potent.

View Article and Find Full Text PDF

Three-dimensional cell technologies as pre-clinical models are emerging tools for mimicking the structural and functional complexity of the nervous system. The accurate exploration of phenotypes in engineered 3D neuronal cultures, however, demands morphological, molecular and especially functional measurements. Particularly crucial is measurement of electrical activity of individual neurons with millisecond resolution.

View Article and Find Full Text PDF

Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic modifiers, analyse their epistatic effects and identify disease-modifying pathways contributing to MJD variable expressivity.

View Article and Find Full Text PDF