Publications by authors named "Peter Henson"

Article Synopsis
  • Chronic Granulomatous Disease (CGD) is characterized by sterile pyogranulomas and increased cytokine production, indicating hyperinflammation.
  • Research using zymosan-treated CGD and wild-type mice revealed that CGD cells form aggregates of neutrophils and monocyte-derived macrophages (MoMacs), driven by LTB signaling and CD11b expression.
  • Disruption of CD11b in CGD mice led to poorly organized pyogranulomas and decreased inflammatory cytokine production, highlighting the importance of neutrophil aggregation in the inflammatory response.
View Article and Find Full Text PDF

Introduction: Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91 (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming.

View Article and Find Full Text PDF

Interstitial macrophages (IMs) reside in the lung tissue surrounding key structures including airways, vessels, and alveoli. Recent work has described IM heterogeneity during homeostasis, however, there are limited data on IMs during inflammation. We sought to characterize IM origin, subsets, and transcriptomic profiles during homeostasis and lipopolysaccharide (LPS) induced acute lung inflammation.

View Article and Find Full Text PDF

The pathogenesis of chronic obstructive pulmonary disease (COPD), a prevalent disease primarily caused by cigarette smoke exposure, is incompletely elucidated. Studies in humans and mice have suggested that hypoxia-inducible factor-1α (HIF-1α) may play a role. Reduced lung levels of HIF-1α are associated with decreased vascular density, whereas increased leukocyte HIF-1α may be responsible for increased inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • Efferocytosis, the process of phagocytosing apoptotic cells, is essential for maintaining tissue health and promotes anti-inflammatory responses in macrophages.
  • When macrophages engulf these dying cells, they show increased levels of arginine-derived polyamines, specifically spermidine and spermine.
  • This increase in polyamines is due to enhanced import mechanisms rather than the breakdown of the engulfed cells themselves, and blocking this import can hinder the anti-inflammatory effects of efferocytosis, suggesting that polyamines are crucial for immune system reprogramming.
View Article and Find Full Text PDF

Loss of NADPH oxidase activity leads to altered phagocyte responses and exaggerated inflammation in chronic granulomatous disease (CGD). We sought to assess the effects of Nox2 absence on monocyte-derived macrophages (MoMacs) in gp91phox-/y mice during zymosan-induced peritonitis. MoMacs from CGD and wild-type (WT) peritonea were characterized over time after zymosan injection.

View Article and Find Full Text PDF

Macrophages are the most abundant immune cell in the alveoli and small airways and are traditionally viewed as a homogeneous population during health. Whether distinct subsets of airspace macrophages are present in healthy humans is unknown. Single-cell RNA sequencing allows for examination of transcriptional heterogeneity between cells and between individuals.

View Article and Find Full Text PDF

Interstitial macrophages (IMs) and airspace macrophages (AMs) play critical roles in lung homeostasis and host defense, and are central to the pathogenesis of a number of lung diseases. However, the absolute numbers of macrophages and the precise anatomic locations they occupy in the healthy human lung have not been quantified. To determine the precise number and anatomic location of human pulmonary macrophages in nondiseased lungs and to quantify how this is altered in chronic cigarette smokers.

View Article and Find Full Text PDF

Macrophages are well recognized for their dual roles in orchestrating inflammatory responses and regulating tissue repair. In almost all acutely inflamed tissues, 2 main subclasses of macrophages coexist. These include embryonically derived resident tissue macrophages and BM-derived recruited macrophages.

View Article and Find Full Text PDF

Early recognition of neoantigen-expressing cells is complex, involving multiple immune cell types. In this study, in vivo, we examined how antigen-presenting cell subtypes coordinate and induce an immunological response against neoantigen-expressing cells, particularly in the absence of a pathogen-associated molecular pattern, which is normally required to license antigen-presenting cells to present foreign or self-antigens as immunogens. Using two reductionist models of neoantigen-expressing cells and two cancer models, we demonstrated that natural IgM is essential for the recognition and initiation of adaptive immunity against neoantigen-expressing cells.

View Article and Find Full Text PDF

Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid.

View Article and Find Full Text PDF

Intercellular transfer of microRNAs can mediate communication between critical effector cells. We hypothesized that transfer of neutrophil-derived microRNAs to pulmonary epithelial cells could alter mucosal gene expression during acute lung injury. Pulmonary-epithelial microRNA profiling during coculture of alveolar epithelial cells with polymorphonuclear neutrophils (PMNs) revealed a selective increase in lung epithelial cell expression of microRNA-223 ().

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis is a progressive lung disease with complex pathophysiology and fatal prognosis. Macrophages (MΦ) contribute to the development of lung fibrosis; however, the underlying mechanisms and specific MΦ subsets involved remain unclear. During lung injury, two subsets of lung MΦ coexist: Siglec-F resident alveolar MΦ and a mixed population of CD11b MΦ that primarily mature from immigrating monocytes.

View Article and Find Full Text PDF
Cell Removal: Efferocytosis.

Annu Rev Cell Dev Biol

October 2017

In metazoans, removal of cells in situ is involved in larval maturation, metamorphosis, and embryonic development. In adults, such cell removal plays a role in the homeostatic maintenance of cell numbers and tissue integrity as well as in the response to cell injury and damage. This removal involves uptake of the whole or fragmented target cells into phagocytes.

View Article and Find Full Text PDF

The alveolar epithelium consists of squamous alveolar type (AT) I and cuboidal ATII cells. ATI cells cover 95-98% of the alveolar surface, thereby playing a critical role in barrier integrity, and are extremely thin, thus permitting efficient gas exchange. During lung injury, ATI cells die, resulting in increased epithelial permeability.

View Article and Find Full Text PDF

Monocytes develop in the bone marrow and represent the primary type of mononuclear phagocyte found in the blood. They were long thought of as a source for tissue macrophages, but recent studies indicate more complex roles for monocytes, both within the circulation and after their migration into tissues and lymphoid organs. In this Review, we discuss the newer concepts underlying the maturation of emigrating monocytes into different classes of tissue macrophages, as well as their potential functions, as monocyte-derived cells, in the tissues.

View Article and Find Full Text PDF

The current paradigm in macrophage biology is that some tissues mainly contain macrophages from embryonic origin, such as microglia in the brain, whereas other tissues contain postnatal-derived macrophages, such as the gut. However, in the lung and in other organs, such as the skin, there are both embryonic and postnatal-derived macrophages. In this study, we demonstrate in the steady-state lung that the mononuclear phagocyte system is comprised of three newly identified interstitial macrophages (IMs), alveolar macrophages, dendritic cells, and few extravascular monocytes.

View Article and Find Full Text PDF

Given the dual and intrinsically contradictory roles of myeloid cells in both protective and yet also damaging effects of inflammatory and immunological processes, we suggest that it is important to consider the mechanisms and circumstances by which these cells are removed, either in the normal unchallenged state or during inflammation or disease. In this essay we address these subjects from a conceptual perspective, focusing as examples on four main myeloid cell types (neutrophils, monocytes, macrophages, and myeloid dendritic cells) and their clearance from the circulation or from naive and inflamed tissues. While the primary clearance process appears to involve endocytic uptake into macrophages, various tissue cell types can also recognize and remove dying cells, though their overall quantitative contribution is unclear.

View Article and Find Full Text PDF

Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the G protein-coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A(-/-) mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening, histology, and elevated IL-6 and IL-5 in colon tissues.

View Article and Find Full Text PDF

Rationale: The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors.

Objectives: Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs.

View Article and Find Full Text PDF

In transplantation, a major obstacle for graft acceptance in MHC-matched individuals is the mismatch of minor histocompatibility Ags. Minor histocompatibility Ags are peptides derived from polymorphic proteins that can be presented by APCs on MHC molecules. The APC subtype uniquely responsible for the rejection of minor Ag-mismatched grafts has not yet been identified.

View Article and Find Full Text PDF

Lung injury and repair is a broad topic that includes many cell types and is relevant to the pathogenesis of most lung diseases. Here, we focus on injury and repair of the alveolus, the principal function of which is to achieve gas exchange. The many cell types and structures present in the alveolus are discussed, with emphasis on their interactions in both health and disease.

View Article and Find Full Text PDF