Publications by authors named "Peter H N De With"

Article Synopsis
  • - AI has the potential to enhance the identification of early-stage colorectal cancer (CRC) during endoscopic procedures, and this scoping review synthesizes evidence on existing research and methodologies in this area.
  • - A comprehensive search identified 26 relevant studies from over 5000 articles, revealing that computer-aided diagnosis (CADx) systems vary significantly in their classification categories, number of images used, and diagnostic performance metrics.
  • - The review emphasizes the need for improved reporting standards in research on CADx systems and highlights a gap in understanding their real-time performance across different centers, recommending future studies to focus on distinguishing CRC from precancerous lesions while assessing invasion depth.
View Article and Find Full Text PDF

Gastrointestinal endoscopic image analysis presents significant challenges, such as considerable variations in quality due to the challenging in-body imaging environment, the often-subtle nature of abnormalities with low interobserver agreement, and the need for real-time processing. These challenges pose strong requirements on the performance, generalization, robustness and complexity of deep learning-based techniques in such safety-critical applications. While Convolutional Neural Networks (CNNs) have been the go-to architecture for endoscopic image analysis, recent successes of the Transformer architecture in computer vision raise the possibility to update this conclusion.

View Article and Find Full Text PDF
Article Synopsis
  • Pre-training deep learning models for endoscopic image analysis using large datasets like ImageNet is common, but it's unclear if natural image features are the best for medical tasks due to the lack of quality medical imagery.
  • This study introduces a new dataset called GastroNet-5M, with over 5 million gastrointestinal endoscopic images, and tests the effectiveness of in-domain pre-training using methods like DINO against pre-training on natural images.
  • Results show that self-supervised pre-training with DINO significantly improves model performance on various gastrointestinal tasks, achieving an average boost of 1.63% for ResNet50 and 4.62% for Vision-Transformer-small compared to models trained on natural images.
View Article and Find Full Text PDF

Data uncertainties, such as sensor noise, occlusions or limitations in the acquisition method can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. In image segmentation, latent density models can be utilized to address this problem.

View Article and Find Full Text PDF

Purpose: For patients with vestibular schwannomas (VS), a conservative observational approach is increasingly used. Therefore, the need for accurate and reliable volumetric tumor monitoring is important. Currently, a volumetric cutoff of 20% increase in tumor volume is widely used to define tumor growth in VS.

View Article and Find Full Text PDF

Background And Aims: Computer-aided diagnosis (CADx) for the optical diagnosis of colorectal polyps is thoroughly investigated. However, studies on human-artificial intelligence interaction are lacking. Our aim was to investigate endoscopists' trust in CADx by evaluating whether communicating a calibrated algorithm confidence score improved trust.

View Article and Find Full Text PDF

To construct a convolutional neural network (CNN) model that can recognize and delineate anatomic structures on intraoperative video frames of robot-assisted radical prostatectomy (RARP) and to use these annotations to predict the surgical urethral length (SUL). Urethral dissection during RARP impacts patient urinary incontinence (UI) outcomes, and requires extensive training. Large differences exist between incontinence outcomes of different urologists and hospitals.

View Article and Find Full Text PDF

Computer-aided detection and diagnosis systems (CADe/CADx) in endoscopy are commonly trained using high-quality imagery, which is not representative for the heterogeneous input typically encountered in clinical practice. In endoscopy, the image quality heavily relies on both the skills and experience of the endoscopist and the specifications of the system used for screening. Factors such as poor illumination, motion blur, and specific post-processing settings can significantly alter the quality and general appearance of these images.

View Article and Find Full Text PDF

Accurate 6-DoF pose estimation of surgical instruments during minimally invasive surgeries can substantially improve treatment strategies and eventual surgical outcome. Existing deep learning methods have achieved accurate results, but they require custom approaches for each object and laborious setup and training environments often stretching to extensive simulations, whilst lacking real-time computation. We propose a general-purpose approach of data acquisition for 6-DoF pose estimation tasks in X-ray systems, a novel and general purpose YOLOv5-6D pose architecture for accurate and fast object pose estimation and a complete method for surgical screw pose estimation under acquisition geometry consideration from a monocular cone-beam X-ray image.

View Article and Find Full Text PDF

The preoperative prediction of resectability pancreatic ductal adenocarcinoma (PDAC) is challenging. This retrospective single-center study examined tumor and vessel radiomics to predict the resectability of PDAC in chemo-naïve patients. The tumor and adjacent arteries and veins were segmented in the portal-venous phase of contrast-enhanced CT scans, and radiomic features were extracted.

View Article and Find Full Text PDF

Optical biopsy in Barrett's oesophagus (BE) using endocytoscopy (EC) could optimize endoscopic screening. However, the identification of dysplasia is challenging due to the complex interpretation of the highly detailed images. Therefore, we assessed whether using artificial intelligence (AI) as second assessor could help gastroenterologists in interpreting endocytoscopic BE images.

View Article and Find Full Text PDF

In livestock breeding, continuous and objective monitoring of animals is manually unfeasible due to the large scale of breeding and expensive labour. Computer vision technology can generate accurate and real-time individual animal or animal group information from video surveillance. However, the frequent occlusion between animals and changes in appearance features caused by varying lighting conditions makes single-camera systems less attractive.

View Article and Find Full Text PDF

Background: Neurosurgical procedures are complex and require years of training and experience. Traditional training on human cadavers is expensive, requires facilities and planning, and raises ethical concerns. Therefore, the use of anthropomorphic phantoms could be an excellent substitute.

View Article and Find Full Text PDF

Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR).

View Article and Find Full Text PDF

Accurate and efficient catheter segmentation in 3D ultrasound (US) is essential for ultrasound-guided cardiac interventions. State-of-the-art segmentation algorithms, based on convolutional neural networks (CNNs), suffer from high computational cost and large 3D data size for GPU implementation, which are far from satisfactory for real-time applications. In this paper, we propose a novel approach for efficient catheter segmentation in 3D US.

View Article and Find Full Text PDF

X-ray Computed Tomography (CT) is an imaging modality where patients are exposed to potentially harmful ionizing radiation. To limit patient risk, reduced-dose protocols are desirable, which inherently lead to an increased noise level in the reconstructed CT scans. Consequently, noise reduction algorithms are indispensable in the reconstruction processing chain.

View Article and Find Full Text PDF

Machine learning models have been developed for numerous medical prognostic purposes. These models are commonly developed using data from single centers or regional registries. Including data from multiple centers improves robustness and accuracy of prognostic models.

View Article and Find Full Text PDF

Colorectal polyps (CRP) are precursor lesions of colorectal cancer (CRC). Correct identification of CRPs during in-vivo colonoscopy is supported by the endoscopist's expertise and medical classification models. A recent developed classification model is the Blue light imaging Adenoma Serrated International Classification (BASIC) which describes the differences between non-neoplastic and neoplastic lesions acquired with blue light imaging (BLI).

View Article and Find Full Text PDF

Radiation exposure in CT imaging leads to increased patient risk. This motivates the pursuit of reduced-dose scanning protocols, in which noise reduction processing is indispensable to warrant clinically acceptable image quality. Convolutional Neural Networks (CNNs) have received significant attention as an alternative for conventional noise reduction and are able to achieve state-of-the art results.

View Article and Find Full Text PDF

 Colonoscopy is considered the gold standard for decreasing colorectal cancer incidence and mortality. Optical diagnosis of colorectal polyps (CRPs) is an ongoing challenge in clinical colonoscopy and its accuracy among endoscopists varies widely. Computer-aided diagnosis (CAD) for CRP characterization may help to improve this accuracy.

View Article and Find Full Text PDF

Medical instrument segmentation in 3D ultrasound is essential for image-guided intervention. However, to train a successful deep neural network for instrument segmentation, a large number of labeled images are required, which is expensive and time-consuming to obtain. In this article, we propose a semi-supervised learning (SSL) framework for instrument segmentation in 3D US, which requires much less annotation effort than the existing methods.

View Article and Find Full Text PDF

This paper presents a camera-based vessel-speed enforcement system based on two cameras. The proposed system detects and tracks vessels per camera view and employs a re-identification (re-ID) function for linking vessels between the two cameras based on multiple bounding-box images per vessel. Newly detected vessels in one camera (query) are compared to the gallery set of all vessels detected by the other camera.

View Article and Find Full Text PDF

Background: Detecting discomfort in infants is an important topic for their well-being and development. In this paper, we present an automatic and continuous video-based system for monitoring and detecting discomfort in infants.

Methods: The proposed system employs a novel and efficient 3D convolutional neural network (CNN), which achieves an end-to-end solution without the conventional face detection and tracking steps.

View Article and Find Full Text PDF

Current prognostic risk scores for transcatheter aortic valve implantation (TAVI) do not benefit yet from modern machine learning techniques, which can improve risk stratification of one-year mortality of patients before TAVI. Despite the advancement of machine learning in healthcare, data sharing regulations are very strict and typically prevent exchanging patient data, without the involvement of ethical committees. A very robust validation approach, including 1300 and 631 patients per center, was performed to validate a machine learning model of one center at the other external center with their data, in a mutual fashion.

View Article and Find Full Text PDF

Current prognostic risk scores in cardiac surgery do not benefit yet from machine learning (ML). This research aims to create a machine learning model to predict one-year mortality of a patient after transcatheter aortic valve implantation (TAVI). We adopt a modern gradient boosting on decision trees classifier (GBDTs), specifically designed for categorical features.

View Article and Find Full Text PDF