Publications by authors named "Peter Goldman"

Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms at the unactivated C6 and C8 positions of a protein-bound octanoyl chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet) radical chemistry; the remainder of the reaction mechanism, especially the source of the sulfur, has been less clear. One controversial proposal involves the removal of sulfur from a second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in destruction of the cluster during each round of catalysis.

View Article and Find Full Text PDF

S-Adenosylmethionine (SAM, also known as AdoMet) radical enzymes use SAM and a [4Fe-4S] cluster to catalyze a diverse array of reactions. They adopt a partial triose-phosphate isomerase (TIM) barrel fold with N- and C-terminal extensions that tailor the structure of the enzyme to its specific function. One extension, termed a SPASM domain, binds two auxiliary [4Fe-4S] clusters and is present within peptide-modifying enzymes.

View Article and Find Full Text PDF

Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure.

View Article and Find Full Text PDF

The 2-deoxy-scyllo-inosamine (DOIA) dehydrogenases are key enzymes in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. In contrast to most DOIA dehydrogenases, which are NAD-dependent, the DOIA dehydrogenase from Bacillus circulans (BtrN) is an S-adenosyl-l-methionine (AdoMet) radical enzyme. To examine how BtrN employs AdoMet radical chemistry, we have determined its structure with AdoMet and substrate to 1.

View Article and Find Full Text PDF

Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S-adenosylmethionine (AdoMet) radical chemistry is used.

View Article and Find Full Text PDF

The indolocarbazole biosynthetic enzymes StaC, InkE, RebC, and AtmC mediate the degree of oxidation of chromopyrrolic acid on route to the natural products staurosporine, K252a, rebeccamycin, and AT2433-A1, respectively. Here, we show that StaC and InkE, which mediate a net 4-electron oxidation, bind FAD with a micromolar K(d), whereas RebC and AtmC, which mediate a net 8-electron oxidation, bind FAD with a nanomolar K(d) while displaying the same FAD redox properties. We further create RebC-10x, a RebC protein with ten StaC-like amino acid substitutions outside of previously characterized FAD-binding motifs and the complementary StaC-10x.

View Article and Find Full Text PDF

Developing electrode-driven biocatalytic systems utilizing the P450 cytochromes for selective oxidations depends not only on achieving electron transfer (ET) but also doing so at rates that favor native-like turnover. Herein we report studies that correlate rates of heme reduction with ET pathways and resulting product distributions. We utilized single-surface cysteine mutants of the heme domain of P450 from Bacillus megaterium and modified the thiols with N-(1-pyrene)-iodoacetamide, affording proteins that could bond to basal-plane graphite.

View Article and Find Full Text PDF

Objective: To investigate whether placebo effects can experimentally be separated into the response to three components-assessment and observation, a therapeutic ritual (placebo treatment), and a supportive patient-practitioner relationship-and then progressively combined to produce incremental clinical improvement in patients with irritable bowel syndrome. To assess the relative magnitude of these components.

Design: A six week single blind three arm randomised controlled trial.

View Article and Find Full Text PDF

We report analyses of electrochemical and spectroscopic measurements on cytochrome P450 BM3 (BM3) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of BM3-DDAB films on silica slides reveal the characteristic low-spin FeIII heme absorption maximum at 418 nm. A prominent peak in the absorption spectrum of BM3 FeII-CO in a DDAB dispersion is at 448 nm; in spectra of aged samples, a shoulder at approximately 420 nm is present.

View Article and Find Full Text PDF

The effect of Ginkgo biloba on the activity of CYP2C9, the isoform responsible for S-warfarin clearance, was assessed in 11 healthy volunteers who received single 100-mg doses of flurbiprofen, a probe substrate for CYP2C9. Subjects also received either a standardized G biloba leaf preparation (Ginkgold, 3 doses of 120 mg) or matching placebo in a randomized, double-blind, 2-way crossover study. Mean kinetic variables for flurbiprofen with either placebo or G biloba were elimination half-life, 3.

View Article and Find Full Text PDF

The extraction, isolation and characterization of 29 natural products contained in Ginkgo biloba have been described, which we have now tested for their in-vitro capacity to inhibit the five major human cytochrome P450 (CYP) isoforms in human liver microsomes. Weak or negligible inhibitory activity was found for the terpene trilactones (ginkgolides A, B, C and J, and bilobalide), and the flavonol glycosides. However 50% inhibitory activity (IC50) was found at concentrations less than 10 microg L(-1) for the flavonol aglycones (kaempferol, quercetin, apigenin, myricetin, tamarixetin) with CYP1A2 and CYP3A.

View Article and Find Full Text PDF

Three new compounds, (7E)-2beta,3alpha-dihydroxy-megastigm-7-en-9-one (1), 3-[5,7-dihydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-8-yl]-4-methoxybenzoic acid (2), and 4'-O-methyl myricetin 3-O-(6-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside (3), were isolated from Ginkgo biloba, together with 27 known compounds. The structures of the new compounds were determined primarily from 1D- and 2D-NMR analysis. The 4-O-methylbenzoic acid structural feature at C-8 in 2 is encountered for the first time.

View Article and Find Full Text PDF