Bacterial resistance represents a major health problem worldwide and there is an urgent need to develop first-in-class compounds directed against new therapeutic targets. We previously developed a drug-discovery platform to identify new antimicrobials able to disrupt the protein-protein interaction between the β' subunit and the σ initiation factor of bacterial RNA polymerase, which is essential for transcription. As a follow-up to such work, we have improved the discovery strategy to make it less time-consuming and more cost-effective.
View Article and Find Full Text PDFThe Anaplastic Lymphoma Kinase (ALK) is a therapeutic target for personalized medicine in selected cancers. Despite excellent clinical responses to ALK inhibitors, most patients develop drug resistance and relapse. New compounds with alternative binding modes are needed to overcome resistant mutants.
View Article and Find Full Text PDFThe anaplastic lymphoma kinase (ALK) is abnormally expressed and hyperactivated in a number of tumors and represents an ideal therapeutic target. Despite excellent clinical responses to ALK inhibition, drug resistance still represents an issue and novel compounds that overcome drug-resistant mutants are needed. We designed, synthesized, and evaluated a large series of azacarbazole inhibitors.
View Article and Find Full Text PDFMatrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization.
View Article and Find Full Text PDFNigratine (also known as 6E11), a flavanone derivative of a plant natural product, was characterized as highly specific non-ATP competitive inhibitor of RIPK1 kinase, one of the key components of necroptotic cell death signaling. We show here that nigratine inhibited both necroptosis (induced by Tumor Necrosis Factor-α) and ferroptosis (induced by the small molecules glutamate, erastin, RSL3 or cumene hydroperoxide) with EC in the µM range. Taken together, our data showed that nigratine is a dual inhibitor of necroptosis and ferroptosis cell death pathways.
View Article and Find Full Text PDFIntroduction: Hyaluronan (HA)-based soft-tissue fillers are injectable crosslinked hydrogels aimed to counteract facial skin aging signs minimally invasive procedures. The crosslinking step is required to drastically improve HA residence time and provide the gel with specific viscoelastic properties matching the clinical indications. While HA as a raw material and HA fillers are widely studied, little is reported about crosslinkers themselves used in commercial fillers.
View Article and Find Full Text PDFWe report the synthesis of substituted indolizidines and quinolizidines using the modified Julia olefination previously developed on imides. The study focuses on the regioselectivity of this reaction on unsymmetrically substituted imides. The scope and regioselectivity of the reaction are presented here, and its utility as a tool for synthesizing natural products is demonstrated through the total synthesis of Pandalizine A.
View Article and Find Full Text PDFModification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against spinal muscular atrophy (SMA). However, a target-based approach to identify small-molecule E7 splicing modifiers has not been attempted, which could reveal novel therapies with improved mechanistic insight. Here, we chose as a target the stem-loop RNA structure TSL2, which overlaps with the 5' splicing site of E7.
View Article and Find Full Text PDFNecroptosis is a regulated form of cell death involved in several disease models including in particular liver diseases. Receptor-interacting protein kinases, RIPK1 and RIPK3, are the main serine/threonine kinases driving this cell death pathway. We screened a noncommercial, kinase-focused chemical library which allowed us to identify Sibiriline as a new inhibitor of necroptosis induced by tumor necrosis factor (TNF) in Fas-associated protein with death domain (FADD)-deficient Jurkat cells.
View Article and Find Full Text PDFTyrosine kinases are involved in the control of several biological processes and have been recognized as hot spots of oncogenic transformation, thus representing a major therapeutic target. Dysregulated activation of RET kinase, either through point mutations or gene fusions, is accountable for a significant fraction of thyroid carcinomas, as well as a minor population of lung cancers. Two drugs are currently available for the treatment of medullary thyroid carcinoma and two additional compounds have been approved for differentiated thyroid carcinoma.
View Article and Find Full Text PDFReadily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA.
View Article and Find Full Text PDFTen protein kinase C (PKC) isozymes play divergent roles in signal transduction. Because of sequence similarities, it is particularly difficult to generate isozyme-selective small molecule inhibitors. In order to identify such a selective binder, we derived a pharmacophore model from the peptide EAVSLKPT, a fragment of PKCε that inhibits the interaction of PKCε and receptor for activated C-kinase 2 (RACK2).
View Article and Find Full Text PDFChromosomal translocations involving anaplastic lymphoma kinase (ALK) are the driving mutations for a range of cancers and ALK is thus considered an attractive therapeutic target. We synthesized a series of functionalized benzo[4,5]imidazo[1,2-c]pyrimidines and benzo[4,5]imidazo[1,2-a]pyrazines by an aza-Graebe-Ullman reaction, followed by palladium-catalyzed cross-coupling reactions. A sequential regioselective cross-coupling route is reported for the synthesis of unsymmetrically disubstituted benzo[4,5]imidazo[1,2-a]pyrazines.
View Article and Find Full Text PDFA series of fluorine and non-fluorine-substituted C-glucosylidenes (exo-glucals) has been synthesized via a modified Julia olefination. The deprotected exo-glucals were prepared in five steps from commercially available d-gluconolactone. The evaluation of this original family of compounds against a panel of glycosidases showed a highly specific in vitro activity towards mammalian β-glucosidase depending on the double bond substituents.
View Article and Find Full Text PDFThe total synthesis of bistramide A and its 36(Z),39(S) and 36(Z),39(R) isomers shows that these compounds have different effects on cell division and apoptosis. The synthesis relies on a novel enol ether-forming reaction for the spiroketal fragment, a kinetic oxa-Michael cyclization reaction for the tetrahydropyran fragment, and an asymmetric crotonylation reaction for the amino acid fragment. Preliminary biological studies show a distinct pattern of influence of each of the three compounds on cell division, differentiation, and apoptosis in HL-60 cells, thus suggesting that these effects are independent activities of the natural product.
View Article and Find Full Text PDFA series of glucopyranosylidene-spiro-isoxazolines was prepared through regio- and stereoselective [3+2]-cycloaddition between the methylene acetylated exo-glucal and aromatic nitrile oxides. The deprotected cycloadducts were evaluated as inhibitors of muscle glycogen phosphorylase b. The carbohydrate-based family of five inhibitors displays K(i) values ranging from 0.
View Article and Find Full Text PDFAffinity chromatography was used to identify potential cellular targets of aloisine A (7-n-butyl-6-(4'-hydroxyphenyl)-5H-pyrrolo[2,3b]pyrazine), a potent inhibitor of cyclin-dependent kinases. This technique is based on the immobilization of the drug on a solid matrix, followed by identification of specifically bound proteins. To this end, both aloisine A and the protein-kinase inactive control N-methyl aloisine, bearing extended linker chains have been synthesized.
View Article and Find Full Text PDFA new class of sulfurated, semi-rigid, radial and low-valent glycosylated asterisk ligands with potential dual function as ligand and probe has some of the highest inhibition potencies of Con A-induced hemagglutination, by using a cross-linking mechanism of Con A which amplifies the enhancement to near nanomolar concentrations with the alpha-d-mannose asterisk.
View Article and Find Full Text PDFUsing an in-house fragment NMR library, we identified a set of ligands that bind rabbit muscular creatine kinase, an enzyme involved in key ATP-dependent processes. The ligands docked to the crystal structures of creatine kinase indicated that a phenylfuroic acid could enter into a pocket adjacent to the nucleotide binding site. This fragment served as an anchor to develop in silico a series of potential inhibitors which could partly access the nucleotide binding site.
View Article and Find Full Text PDFNAD+-dependent histone deacetylases, sirtuins, cleave acetyl groups from lysines of histones and other proteins to regulate their activity. Identification of potent selective inhibitors would help to elucidate sirtuin biology and could lead to useful therapeutic agents. NAD+ has an adenosine moiety that is also present in the kinase cofactor ATP.
View Article and Find Full Text PDF