One of the most important areas of application for equation-of-motion coupled-cluster (EOM-CC) theory is the prediction, simulation, and analysis of various types of electronic spectra. In this work, the EOM-CC method for ionized states, known as EOM-IP-CC, is applied to the closely lying and coupled pair of states of the ozone cation─ and ─using highly accurate treatments including up to the full single, double, triple, and quadruple excitations (EOM-IP-CCSDTQ). Combined with a venerable and powerful method for calculating vibronic spectra from the Hamiltonian produced by EOM-IP-CC calculations, the simulations yield a spectrum that is in good agreement with the photoelectron spectrum of ozone.
View Article and Find Full Text PDFA computational methodology, founded on chemical concepts, is presented for interpreting the role of nuclear motion in the electron transport through single-molecule junctions (SMJ) using many-electron ab initio quantum chemical calculations. Within this approach the many-electron states of the system, computed at the SOS-ADC(2) level, are followed along the individual normal modes of the encapsulated molecules. The inspection of the changes in the partial charge distribution of the many-electron states allows the quantification of the electron transport and the estimation of transmission probabilities.
View Article and Find Full Text PDFThe projected atomic orbital (PAO) technique is presented for the construction of virtual orbital spaces in projection-based embedding (PbE) applications. The proposed straightforward procedure produces a set of virtual orbitals that are used in the final, high-level calculation of the embedded active subsystem. The PAO scheme is demonstrated on intermolecular potentials of bimolecular complexes in ground and excited states, including Rydberg excitations.
View Article and Find Full Text PDFThe electronic excitations of conformationally constrained bithiophene cage systems as previously investigated by Lewis et al. (J. Am.
View Article and Find Full Text PDFWhile Coupled-Cluster methods have been proven to provide an accurate description of excited electronic states, the scaling of the computational costs with the system size limits the degree for which these methods can be applied. In this work different aspects of fragment-based approaches are studied on noncovalently bound molecular complexes with interacting chromophores of the fragments, such as π-stacked nucleobases. The interaction of the fragments is considered at two distinct steps.
View Article and Find Full Text PDFThe CC2 and ADC(2) wave function models and their spin-component scaled modifications are adopted for predicting vertical ionization potentials (VIPs) and electron affinities (VEAs). The ionic solutions are obtained as electronic excitations in the continuum orbital formalism, making possible the use of existing, widespread quantum chemistry codes with minimal modifications, in full consistency with the treatment of charge transfer excitations. The performance of different variants is evaluated via benchmark calculations on various sets from previous works, containing small- and medium-sized systems, including the nucleobases.
View Article and Find Full Text PDFThe performance of multilevel quantum chemical approaches, which utilize an atom-based system partitioning scheme to model various electronic excited states, is studied. The considered techniques include the mechanical-embedding (ME) of "our own N-layered integrated molecular orbital and molecular mechanics" (ONIOM) method, the point charge embedding (PCE), the electronic-embedding (EE) of ONIOM, the frozen density-embedding (FDE), the projector-based embedding (PbE), and our local domain-based correlation method. For the investigated multilevel approaches, the second-order algebraic-diagrammatic construction [ADC(2)] approach was utilized as the high-level method, which was embedded in either Hartree-Fock or a density functional environment.
View Article and Find Full Text PDFThe ground state intermolecular potential of bimolecular complexes of N-heterocycles is analyzed for the impact of individual terms in the interaction energy as provided by various, conceptually different theories. Novel combinations with several formulations of the electrostatic, Pauli repulsion, and dispersion contributions are tested at both short- and long-distance sides of the potential energy surface, for various alignments of the pyrrole dimer as well as the cytosine-uracil complex. The integration of a DFT/CCSD density embedding scheme, with dispersion terms from the effective fragment potential (EFP) method is found to provide good agreement with a reference CCSD(T) potential overall; simultaneously, a quantum mechanics/molecular mechanics approach using CHELPG atomic point charges for the electrostatic interaction, augmented by EFP dispersion and Pauli repulsion, comes also close to the reference result.
View Article and Find Full Text PDFThe molecular level understanding of electronic transport properties depends on the reliable theoretical description of charge-transfer (CT)-type electronic states. In this paper, the performance of spin-component-scaled variants of the popular CC2 and ADC(2) methods is evaluated for CT states, following benchmark strategies of earlier studies that revealed a compromised accuracy of the unmodified models. In addition to statistics on the accuracy of vertical excitation energies at equilibrium and infinite separation of bimolecular complexes, potential energy surfaces of the ammonia-fluorine complex are also reported.
View Article and Find Full Text PDFMass-dependent diagonal Born-Oppenheimer corrections (DBOCs) to the ab initio electronic ground state potential energy surface for the main O isotopologue and for homogeneous isotopic substitutions O and O of the ozone molecule are reported for the first time. The system being of strongly multiconfigurational character, multireference configuration interaction wave function ansatz with different complete active spaces was used. The reliable DBOC calculations with the targeted accuracy were possible to carry out up to about half of the dissociation threshold D.
View Article and Find Full Text PDFAn up-to-date overview of the CFOUR program system is given. After providing a brief outline of the evolution of the program since its inception in 1989, a comprehensive presentation is given of its well-known capabilities for high-level coupled-cluster theory and its application to molecular properties. Subsequent to this generally well-known background information, much of the remaining content focuses on lesser-known capabilities of CFOUR, most of which have become available to the public only recently or will become available in the near future.
View Article and Find Full Text PDFThe numerous existing publications on benchmarking quantum chemistry methods for excited states rarely include Charge Transfer (CT) states, although many interesting phenomena in, e.g., biochemistry and material physics involve the transfer of electrons between fragments of the system.
View Article and Find Full Text PDFThe core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2020
In a recent paper of this journal ( Tajti ; ; Szalay . 2019 , 15 , 5523 ), we have shown that failures of the CC2 method to describe Rydberg excited states as well as potential energy surfaces of certain valence excited states can be cured by spin-component scaled (SCS) versions SCS-CC2 and SOS-CC2 to a large extent. In this paper, the related and popular second-order algebraic diagrammatic construction (ADC(2)) method and its SCS variants are inspected with the previously established methodology.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2019
Benchmark calculations with the Spin-Component-Scaled CC2 variants SCS-CC2 and SOS-CC2 are presented for the electronically excited valence and Rydberg states of small- and medium-sized molecules. Besides the vertical excitation energies and excited state gradients, the potential energy surfaces are also investigated via scans following the forces that act in the Franck-Condon region. The results are compared to the regular CC2 ones, as well as higher level methods CCSD, CCSD(T)(a)*, and CCSDT.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2018
The validation of the quality of the description of excited electronic states is of special importance in quantum chemistry as the general reliability of ab initio methods shows a much larger variation for these states than for the ground state. In this study, we investigate the quality of excited state energy gradients and potential energy surfaces on selected systems, as provided by the single reference coupled cluster variants CC2, CCSD, CCSD(T)(a)*, and CC3. Gradients and surface plots that follow the Franck-Condon forces are compared to the respective CCSDT reference values, thereby establishing a useful strategy for judging each variant's accuracy.
View Article and Find Full Text PDFUnderstanding the properties of electronically excited states is a challenging task that becomes increasingly important for numerous applications in chemistry, molecular physics, molecular biology, and materials science. A substantial impact is exerted by the fascinating progress in time-resolved spectroscopy, which leads to a strongly growing demand for theoretical methods to describe the characteristic features of excited states accurately. Whereas for electronic ground state problems of stable molecules the quantum chemical methodology is now so well developed that informed nonexperts can use it efficiently, the situation is entirely different concerning the investigation of excited states.
View Article and Find Full Text PDFFor the energy emitted in a textbook example of chemiluminescence, the peculiar red light produced by singlet molecular oxygen is about twice that of the spin-forbidden O(aΔ) → O(X∑) transition. Theoretical studies suggest that the O(aΔ)-O(aΔ) van der Waals interaction is weak, and at room temperature no long-lived complex is formed. Our high-level ab initio calculations show that in the bound domain of the dimer, the oscillator strength is very small, but increases at smaller intermolecular separations, where, however, the interaction is repulsive.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2017
We present a comprehensive statistical analysis on the accuracy of various excited state Coupled Cluster methods, accentuating the effect of diffuse basis sets on vertical excitation energies of valence and Rydberg-type states. Many popular approximate doubles and triples methods are benchmarked with basis sets up to aug-cc-pVTZ, with high level EOM-CCSDT results used as reference. The results reveal a serious deficiency of CC2 linear response and CIS(D) techniques in the description of Rydberg states, a feature not shown by the EOM-CCSD(2) and EOM-CCSD variants.
View Article and Find Full Text PDFDescribing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2016
DNA building blocks consisting of up to four nucleobases are investigated using the EOM-CCSD and CC2-LR methods in two B-DNA-like arrangements of a poly-adenine:poly-thymine (poly-A:poly-T) system. Excitation energies and oscillator strengths are presented and the characteristics of the excited states are discussed. Excited states of single-stranded poly-A systems are highly delocalized, especially the spectroscopically bright states, where delocalization over up to four fragments can be observed.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2015
Theoretical modeling of the charge transport in organic materials in the diabatic representation requires an accurate evaluation of the charge transfer integrals. In this paper, we show that the coupled cluster and MBPT(2) approaches are the methods of choice for performing the benchmark calculations of this quantity, in contrast to some recently published results. We demonstrate that a proper treatment of the involved ionized states, achieved by applying the continuum-orbital strategy, reduces the error of the transfer integrals by one order of magnitude, which in the case of the CC2 method corresponds to a lowering of the mean relative unsigned error (MRUE) from 39.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2015
A detailed quantum chemical investigation was undertaken to obtain the structure and energetics of cytosine hydrates Cyt·nH2O, with n = 1 to 7. The MP2(fc)/aug-cc-pVDZ level was used as the standard, with some DFT (B3LYP) and coupled cluster calculations, as well as calculations with the aug-cc-pVTZ basis set added for comparison. In a systematic search for microhydrated forms of cytosine, we have found that several structures have not yet been reported in the literature.
View Article and Find Full Text PDFThe charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors.
View Article and Find Full Text PDF