To identify abiotic processes that govern the fate of a sulfate conjugated estrogen, 17β-estradiol-17-sulfate (E2-17S), soil batch experiments were conducted to investigate the dissipation, sorption, and degradation of radiolabeled E2-17S under sterilized conditions. The aqueous dissipation half-lives (DT50) for E2-17S ranged from 2.5 to 9.
View Article and Find Full Text PDFIn the environment, estrogen conjugates can be precursors to the endocrine-disrupting free estrogens, 17β-estradiol (E2) and estrone (E1). Compared to other estrogen conjugates, 17β-estradiol-17-sulfate (E2-17S) is detected at relatively high concentrations and frequencies in animal manure and surface runoff from fields receiving manure. To elucidate the lifecycle of manure-borne estrogens and their conjugates in the environment, the fate of radiolabelled E2-17S in agricultural soils was investigated using laboratory batch studies with soils of different organic carbon (OC) content (1.
View Article and Find Full Text PDFThe occurrence of the manure-borne estrogen, 17β-estradiol (E2), was investigated in laboratory and field soils. In the laboratory, E2 was applied to soil to simulate concentrations found in swine (Sus scrofa domestica) manure (5000ngL(-1)). The aqueous-extracted E2 dissipated in the soil by 98% within 1h and was not significantly different from background concentrations (18ng L(-1)) for the duration of the experiment (64h).
View Article and Find Full Text PDF