The time of a stochastic process first passing through a boundary is important to many diverse applications. However, we can rarely compute the analytical distribution of these first-passage times. We develop an approximation to the first and second moments of a general first-passage time problem in the limit of large, but finite, populations using Kramers-Moyal expansion techniques.
View Article and Find Full Text PDFWe study classical Markovian stochastic systems with discrete states, coupled to randomly switching external environments. For fast environmental processes we derive reduced dynamics for the system itself, focusing on corrections to the adiabatic limit of infinite timescale separation. We show that this can lead to master equations with bursting events.
View Article and Find Full Text PDFWe study stochastic population dynamics coupled to fast external environments and combine expansions in the inverse switching rate of the environment and a Kramers-Moyal expansion in the inverse size of the population. This leads to a series of approximation schemes, capturing both intrinsic and environmental noise. These methods provide a means of efficient simulation and we show how they can be used to obtain analytical results for the fluctuations of population dynamics in switching environments.
View Article and Find Full Text PDFPLoS Comput Biol
February 2018
Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks.
View Article and Find Full Text PDFWe study individual-based dynamics in finite populations, subject to randomly switching environmental conditions. These are inspired by models in which genes transition between on and off states, regulating underlying protein dynamics. Similarly, switches between environmental states are relevant in bacterial populations and in models of epidemic spread.
View Article and Find Full Text PDF