Bacterial resistance represents a major health problem worldwide and there is an urgent need to develop first-in-class compounds directed against new therapeutic targets. We previously developed a drug-discovery platform to identify new antimicrobials able to disrupt the protein-protein interaction between the β' subunit and the σ initiation factor of bacterial RNA polymerase, which is essential for transcription. As a follow-up to such work, we have improved the discovery strategy to make it less time-consuming and more cost-effective.
View Article and Find Full Text PDFWe report the synthesis of substituted indolizidines and quinolizidines using the modified Julia olefination previously developed on imides. The study focuses on the regioselectivity of this reaction on unsymmetrically substituted imides. The scope and regioselectivity of the reaction are presented here, and its utility as a tool for synthesizing natural products is demonstrated through the total synthesis of Pandalizine A.
View Article and Find Full Text PDFReadily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA.
View Article and Find Full Text PDFChromosomal translocations involving anaplastic lymphoma kinase (ALK) are the driving mutations for a range of cancers and ALK is thus considered an attractive therapeutic target. We synthesized a series of functionalized benzo[4,5]imidazo[1,2-c]pyrimidines and benzo[4,5]imidazo[1,2-a]pyrazines by an aza-Graebe-Ullman reaction, followed by palladium-catalyzed cross-coupling reactions. A sequential regioselective cross-coupling route is reported for the synthesis of unsymmetrically disubstituted benzo[4,5]imidazo[1,2-a]pyrazines.
View Article and Find Full Text PDFA series of fluorine and non-fluorine-substituted C-glucosylidenes (exo-glucals) has been synthesized via a modified Julia olefination. The deprotected exo-glucals were prepared in five steps from commercially available d-gluconolactone. The evaluation of this original family of compounds against a panel of glycosidases showed a highly specific in vitro activity towards mammalian β-glucosidase depending on the double bond substituents.
View Article and Find Full Text PDFThe total synthesis of bistramide A and its 36(Z),39(S) and 36(Z),39(R) isomers shows that these compounds have different effects on cell division and apoptosis. The synthesis relies on a novel enol ether-forming reaction for the spiroketal fragment, a kinetic oxa-Michael cyclization reaction for the tetrahydropyran fragment, and an asymmetric crotonylation reaction for the amino acid fragment. Preliminary biological studies show a distinct pattern of influence of each of the three compounds on cell division, differentiation, and apoptosis in HL-60 cells, thus suggesting that these effects are independent activities of the natural product.
View Article and Find Full Text PDFA series of glucopyranosylidene-spiro-isoxazolines was prepared through regio- and stereoselective [3+2]-cycloaddition between the methylene acetylated exo-glucal and aromatic nitrile oxides. The deprotected cycloadducts were evaluated as inhibitors of muscle glycogen phosphorylase b. The carbohydrate-based family of five inhibitors displays K(i) values ranging from 0.
View Article and Find Full Text PDFA new class of sulfurated, semi-rigid, radial and low-valent glycosylated asterisk ligands with potential dual function as ligand and probe has some of the highest inhibition potencies of Con A-induced hemagglutination, by using a cross-linking mechanism of Con A which amplifies the enhancement to near nanomolar concentrations with the alpha-d-mannose asterisk.
View Article and Find Full Text PDF