Publications by authors named "Peter G Gildner"

A general method has been developed for the previously challenging arylation of cyclopropylamine and N-arylcyclopropylamines. Highly active, air-stable, and commercially available R-allylpalladium precatalysts provide access to a wide range of (hetero)arylated cyclopropylanilines in high yields. Precatalysts [(tBuBrettPhos)Pd(allyl)]OTf and [(BrettPhos)Pd(crotyl)]OTf, deliver monoarylated products, while (PtBu3)Pd(crotyl)Cl is suited for preparing unsymmetrical diarylated products.

View Article and Find Full Text PDF

Copper catalysis now enables the efficient C-alkylation of nitroalkanes with α-bromonitriles. Using a simple and inexpensive catalyst, this process provides access to β-cyanonitroalkanes. The method is highly tolerant of various functional groups and substitution patterns.

View Article and Find Full Text PDF

Two new classes of highly active yet air- and moisture-stable π-R-allylpalladium complexes containing bulky biaryl- and bipyrazolylphosphines with extremely broad ligand scope have been developed. Neutral π-allylpalladium complexes incorporated a range of biaryl/bipyrazolylphosphine ligands, while extremely bulky ligands were accommodated by a cationic scaffold. These complexes are easily activated under mild conditions and are efficient for a wide array of challenging C-C and C-X (X = heteroatom) cross-coupling reactions.

View Article and Find Full Text PDF

Using a simple copper catalyst, the alkylation of nitroalkanes with α-bromocarbonyls is now possible. This method provides a general, functional group tolerant route to β-nitrocarbonyl compounds, including nitro amides, esters, ketones, and aldehydes. The highly sterically dense, functional group rich products from these reactions can be readily elaborated into a range of complex nitrogen-containing molecules, including highly substituted β-amino acids.

View Article and Find Full Text PDF

The C-alkylation of nitroalkanes under mild conditions has been a significant challenge in organic synthesis for more than a century. Herein we report a simple Cu(I) catalyst, generated in situ, that is highly effective for C-benzylation of nitroalkanes using abundant benzyl bromides and related heteroaromatic compounds. This process, which we believe proceeds via a thermal redox mechanism, allows access to a variety of complex nitroalkanes under mild reaction conditions and represents the first step toward the development of a general catalytic system for the alkylation of nitroalkanes.

View Article and Find Full Text PDF