Open pit mining frequently requires regional water tables to be lowered to access ore deposits. When mines close, dewatering ceases allowing the water table to recover. In arid and semi-arid mining regions, the developing pit lakes are predominantly fed by groundwater during this recovery phase and pit lakes develop first into "terminal sinks" for the surrounding groundwater system.
View Article and Find Full Text PDFManaged aquifer recharge (MAR) has been gaining adoption within the mining industry for managing surplus water volumes and reducing the groundwater impacts of dewatering. This paper reviews MAR for mining and includes an inventory of 27 mines using or considering MAR for current or future operations. Most mines using MAR are in arid or semi-arid regions and are implementing it through infiltration basins or bore injection to manage surplus water, preserve aquifers for environmental or human benefit, or adhere to licensing that requires zero surface discharge.
View Article and Find Full Text PDFDewatering of open pit mines can lower the regional water table for distances of several kilometers from the pit. When the mine is closed, dewatering operations usually cease, and the water table near the pit begins to rise. If the pit is backfilled, the water table will eventually recover, but this recovery may take several hundred years.
View Article and Find Full Text PDFIn large-scale pumping projects, such as mine dewatering, predictions are often made about the rate of groundwater level recovery after pumping has ceased. However, these predictions may be impacted by geological uncertainty-including the presence of undetected impermeable barriers. During pumping, an impermeable barrier may be undetected if it is located beyond the maximum extent of the cone of depression; yet it may still control drawdown during the recovery phase.
View Article and Find Full Text PDFGas exchange across the air-water interface is a key process determining the release of greenhouse gases from surface waters and a fundamental component of gas dynamics in aquatic systems. To experimentally quantify the gas transfer velocity in a wide range of aquatic settings, a novel method based on recently developed techniques for the in situ, near-continuous measurement of dissolved (noble) gases with a field portable mass spectrometer is presented. Variations in observed dissolved gas concentrations are damped and lagged with respect to equilibrium concentrations, being the result of (a) temperature (and thus solubility) variations, (b) water depth, and (c) the specific gas transfer velocity ( k).
View Article and Find Full Text PDFGas production from unconventional reservoirs has led to widespread environmental concerns. Despite several excellent reviews of various potential impacts to water resources from unconventional gas production, no study has systematically and quantitatively assessed the potential for these impacts to occur. We use empirical evidence and numerical and analytical models to quantify the likelihood of surface water and groundwater contamination, and shallow aquifer depletion from unconventional gas developments.
View Article and Find Full Text PDFEvaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO, NH and PO) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances.
View Article and Find Full Text PDFHydraulic head differences across the screened or open interval of a well significantly influence the sampled water mixture. Sample bias can occur due to an insufficient pumping rate and/or due to native groundwater displacement by intraborehole flow (IBF). Proper understanding of the sampled water mixture is crucial for accurate interpretation of environmental tracers and groundwater chemistry data, and hence groundwater characterization.
View Article and Find Full Text PDFThe influence of temperature on virus (PRD1 and ΦX174) and carboxyl-modified latex nanoparticle (50 and 100nm) attachment was examined in sand-packed columns under various physiochemical conditions. When the solution ionic strength (IS) equaled 10 and 30mM, the attachment rate coefficient (k) increased up to 109% (p<0.0002) and the percentage of the sand surface area that contributed to attachment (S) increased up to 160% (p<0.
View Article and Find Full Text PDFThe transport and retention of Escherichia coli and bacteriophages (PRD1, MS2 and ФX174), as surrogates for human pathogenic bacteria and viruses, respectively, were studied in the sand that was amended with several types of biochar produced from various feedstocks. Batch and column studies were conducted to distinguish between the role of attachment and straining in microbe retention during transport. Batch experiments conducted at various solution chemistries showed negligible attachment of viruses and bacteria to biochar before or after chemical activation.
View Article and Find Full Text PDFThe design of wells beneath streams and floodplains has often employed with tall standpipes to prevent incursion of surface water into the well during flood events. Here, an approach has been presented to minimise the infrastructure demands in these environments by sealing the well top (e.g.
View Article and Find Full Text PDFThe hydraulic gradient between aquifers and rivers is one of the most variable properties in a river/aquifer system. Detailed process understanding of bank storage under hydraulic gradients is obtained from a two-dimensional numerical model of a variably saturated aquifer slice perpendicular to a river. Exchange between the river and the aquifer occurs first at the interface with the unsaturated zone.
View Article and Find Full Text PDFApparent ages obtained from the measured concentrations of environmental tracers have the potential to inform recharge rates, flow rates, and assist in the calibration of groundwater models. A number of studies have investigated sources of error in the relationships between the apparent ages, and the age assumed by models to relate this quantity to an aquifer property (e.g.
View Article and Find Full Text PDFTechniques for characterizing the hydraulic properties and groundwater flow processes of aquifers are essential to design hydrogeologic conceptual models. In this study, rapid time series temperature profiles within open-groundwater wells in fractured rock were measured using fiber optic distributed temperature sensing (FO-DTS). To identify zones of active groundwater flow, two continuous electrical heating cables were installed alongside a FO-DTS cable to heat the column of water within the well and to create a temperature difference between the ambient temperature of the groundwater in the aquifer and that within the well.
View Article and Find Full Text PDFDecline in regional water tables (RWT) can cause losing streams to disconnect from underlying aquifers. When this occurs, an inverted water table (IWT) will develop beneath the stream, and an unsaturated zone will be present between the IWT and the RWT. The IWT marks the base of the saturated zone beneath the stream.
View Article and Find Full Text PDFThe interpretation of apparent ages often assumes that a water sample is composed of a single age. In heterogeneous aquifers, apparent ages estimated with environmental tracer methods do not reflect mean water ages because of the mixing of waters from many flow paths with different ages. This is due to nonlinear variations in atmospheric concentrations of the tracer with time resulting in biases of mixed concentrations used to determine apparent ages.
View Article and Find Full Text PDFRecognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model.
View Article and Find Full Text PDFWhen describing the hydraulic relationship between rivers and aquifers, the term disconnected is frequently misunderstood or used in an incorrect way. The problem is compounded by the fact that there is no definitive literature on the topic of disconnected surface water and groundwater. We aim at closing this gap and begin the discussion with a short introduction to the historical background of the terminology.
View Article and Find Full Text PDFThe radon isotope 222Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected.
View Article and Find Full Text PDFThe accuracy with which MODFLOW simulates surface water-groundwater interaction is examined for connected and disconnected losing streams. We compare the effect of different vertical and horizontal discretization within MODFLOW and also compare MODFLOW simulations with those produced by HydroGeoSphere. HydroGeoSphere is able to simulate both saturated and unsaturated flow, as well as surface water, groundwater and the full coupling between them in a physical way, and so is used as a reference code to quantify the influence of some of the simplifying assumptions of MODFLOW.
View Article and Find Full Text PDFRegional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers.
View Article and Find Full Text PDFThis article examines the required spatial discretization perpendicular to the fracture-matrix interface (FMI) for numerical simulation of solute transport in discretely fractured porous media. The discrete-fracture, finite-element model HydroGeoSphere (Therrien et al. 2005) and a discrete-fracture implementation of MT3DMS (Zheng 1990) were used to model solute transport in a single fracture, and the results were compared to the analytical solution of Tang et al.
View Article and Find Full Text PDFApplied tracer tests provide a means to estimate aquifer parameters in fractured rock. The traditional approach to analysing these tests has been using a single fracture model to find the parameter values that generate the best fit to the measured breakthrough curve. In many cases, the ultimate aim is to predict solute transport under the natural gradient.
View Article and Find Full Text PDF