Millions of distinct metal-organic frameworks (MOFs) can be made by combining metal nodes and organic linkers. At present, over 90,000 MOFs have been synthesized and over 500,000 predicted. This raises the question whether a new experimental or predicted structure adds new information.
View Article and Find Full Text PDFLimiting the increase of CO in the atmosphere is one of the largest challenges of our generation. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO emissions, much effort is focused on developing solid adsorbents that can efficiently capture CO from flue gases emitted from anthropogenic sources. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs.
View Article and Find Full Text PDFBiologically derived metal-organic frameworks (bio-MOFs) are of great importance as they can be used as models for bio-mimicking and in catalysis, allowing us to gain insights into how large biological molecules function. Through rational design, here we report the synthesis of a novel bio-MOF featuring unobstructed Watson-Crick faces of adenine (Ade) pointing towards the MOF cavities. We show, through a combined experimental and computational approach, that thymine (Thy) molecules diffuse through the pores of the MOF and become base-paired with Ade.
View Article and Find Full Text PDFCharge equilibration (Qeq) methods can estimate the electrostatic potential of molecules and periodic frameworks by assigning point charges to each atom, using only a small fraction of the resources needed to compute density functional (DFT)-derived charges. This makes possible, for example, the computational screening of thousands of microporous structures to assess their performance for the adsorption of polar molecules. Recently, different variants of the original Qeq scheme were proposed to improve the quality of the computed point charges.
View Article and Find Full Text PDFIn this work, we report the synthesis of SION-8, a novel metal-organic framework (MOF) based on Ca(II) and a tetracarboxylate ligand TBAPy endowed with two chemically distinct types of pores characterized by their hydrophobic and hydrophilic properties. By altering the activation conditions, we gained access to two bulk materials: the fully activated SION-8F and the partially activated SION-8P with exclusively the hydrophobic pores activated. SION-8P shows high affinity for both CO ( Q = 28.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have emerged as versatile materials for applications ranging from gas separation and storage, catalysis, and sensing. The attractive feature of MOFs is that, by changing the ligand and/or metal, they can be chemically tuned to perform optimally for a given application. In most, if not all, of these applications one also needs a material that has a sufficient mechanical stability, but our understanding of how changes in the chemical structure influence mechanical stability is limited.
View Article and Find Full Text PDFWe report the syntheses and structures of five metal-organic frameworks (MOFs) based on transition metals (Ni, Cu, and Zn), adenine, and di-, tri-, and tetra-carboxylate ligands. Adenine, with multiple N donor sites, was found to coordinate to the metal centers in different binding modes including bidentate (through N7 and N9, or N3 and N9) and tridentate (through N3, N7, and N9). Systematic investigations of the protonation states of adenine in each MOF structure via X-ray photoelectron spectroscopy revealed that adenine can be selectively protonated through N1, N3, or N7.
View Article and Find Full Text PDFWe have developed a simple text mining algorithm that allows us to identify surface area and pore volumes of metal-organic frameworks (MOFs) using manuscript html files as inputs. The algorithm searches for common units (e.g.
View Article and Find Full Text PDFPore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.
View Article and Find Full Text PDFFor applications of metal-organic frameworks (MOFs) such as gas storage and separation, flexibility is often seen as a parameter that can tune material performance. In this work we aim to determine the optimal flexibility for the shape selective separation of similarly sized molecules (e.g.
View Article and Find Full Text PDFIn this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials' properties.
View Article and Find Full Text PDFIn this work, we have developed quantitative structure-property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar).
View Article and Find Full Text PDFA cubic metal-organic framework with an unprecedented octanuclear secondary building unit (SBU) was isolated. The obtained SBU is composed of 8 Co(II) ions at each vertex, 6 μ4-OH groups at each face, and 12 cpt(-) ligands framing the metal core. The cuboctahedra arrange in a ubt framework topology, eliciting a highly symmetrical MOF structure.
View Article and Find Full Text PDFUnderstanding the molecular details of CO(2)-sorbent interactions is critical for the design of better carbon-capture systems. Here we report crystallographic resolution of CO(2) molecules and their binding domains in a metal-organic framework functionalized with amine groups. Accompanying computational studies that modeled the gas sorption isotherms, high heat of adsorption, and CO(2) lattice positions showed high agreement on all three fronts.
View Article and Find Full Text PDF