HMGA1 is an abundant non-histone chromatin protein that has been implicated in embryonic development, cancer, and cellular senescence, but its specific role remains elusive. Here, we combine functional genomics approaches with graph theory to investigate how HMGA1 genomic deposition controls high-order chromatin networks in an oncogene-induced senescence model. While the direct role of HMGA1 in gene activation has been described previously, we find little evidence to support this.
View Article and Find Full Text PDFActivation of the p53 tumor suppressor triggers a transcriptional program to control cellular response to stress. However, the molecular mechanisms by which p53 controls gene transcription are not completely understood. Here, we uncover the critical role of spatio-temporal genome architecture in this process.
View Article and Find Full Text PDFBackground: Long-range interactions between promoters and cis-regulatory elements, such as enhancers, play critical roles in gene regulation. However, the role of three-dimensional (3D) chromatin structure in orchestrating changes in transcriptional regulation during direct cell reprogramming is not fully understood.
Results: Here, we performed integrated analyses of chromosomal architecture, epigenetics, and gene expression using Hi-C, promoter Capture Hi-C (PCHi-C), ChIP-seq, and RNA-seq during trans-differentiation of Pre-B cells into macrophages with a β-estradiol inducible C/EBPαER transgene.
Proc Natl Acad Sci U S A
September 2023
Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis () oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores.
View Article and Find Full Text PDFEmbryonic development involves massive proliferation and differentiation of cell lineages. This must be supported by chromosome replication and epigenetic reprogramming, but how proliferation and cell fate acquisition are balanced in this process is not well understood. Here we use single cell Hi-C to map chromosomal conformations in post-gastrulation mouse embryo cells and study their distributions and correlations with matching embryonic transcriptional atlases.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2022
Genome sequencing has revealed over 300 million genetic variations in human populations. Over 90% of variants are single nucleotide polymorphisms (SNPs), the remainder include short deletions or insertions, and small numbers of structural variants. Hundreds of thousands of these variants have been associated with specific phenotypic traits and diseases through genome wide association studies which link significant differences in variant frequencies with specific phenotypes among large groups of individuals.
View Article and Find Full Text PDFApproximately 20% of acute myeloid leukemia (AML) patients carry mutations in IDH1 or IDH2 that result in over-production of the oncometabolite D-2-hydroxyglutarate (2-HG). Small molecule inhibitors that block 2-HG synthesis can induce complete morphological remission; however, almost all patients eventually acquire drug resistance and relapse. Using a multi-allelic mouse model of IDH1-mutant AML, we demonstrate that the clinical IDH1 inhibitor AG-120 (ivosidenib) exerts cell-type-dependent effects on leukemic cells, promoting delayed disease regression.
View Article and Find Full Text PDFMapping chromatin loops from noisy Hi-C heatmaps remains a major challenge. Here we present DeepLoop, which performs rigorous bias correction followed by deep-learning-based signal enhancement for robust chromatin interaction mapping from low-depth Hi-C data. DeepLoop enables loop-resolution, single-cell Hi-C analysis.
View Article and Find Full Text PDFGenome organization and the three-dimensional folding of chromosomes are now seen as major contributors to nearly all nuclear functions including gene regulation, replication and repair. Recent studies have shown that in addition to the dramatic metamorphoses in chromosome conformation associated with entry to, and exit from mitosis, chromosomes undergo continual conformational changes throughout interphase with differential dynamics in loop structure, topological domains, compartments and lamina-associated domains. Understanding and accounting for these cell-cycle-dependent conformational changes is essential for the interpretation of data from a growing array of powerful molecular techniques to investigate genome conformation function, and to identify the molecules and mechanisms that drive chromosome conformational changes.
View Article and Find Full Text PDFUnlabelled: Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC).
View Article and Find Full Text PDFSenescence is a fate-determined state, accompanied by reorganization of heterochromatin. Although lineage-appropriate genes can be temporarily repressed through facultative heterochromatin, stable silencing of lineage-inappropriate genes often involves the constitutive heterochromatic mark, histone H3 lysine 9 trimethylation (H3K9me3). The fate of these heterochromatic genes during senescence is unclear.
View Article and Find Full Text PDFDevelopment of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified.
View Article and Find Full Text PDFNeutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers.
View Article and Find Full Text PDFSenescence is a state of stable proliferative arrest, generally accompanied by the senescence-associated secretory phenotype, which modulates tissue homeostasis. Enhancer-promoter interactions, facilitated by chromatin loops, play a key role in gene regulation but their relevance in senescence remains elusive. Here, we use Hi-C to show that oncogenic RAS-induced senescence in human diploid fibroblasts is accompanied by extensive enhancer-promoter rewiring, which is closely connected with dynamic cohesin binding to the genome.
View Article and Find Full Text PDFChinese hamster ovary (CHO) cell lines are the pillars of a multibillion-dollar biopharmaceutical industry producing recombinant therapeutic proteins. The effects of local chromatin organization and epigenetic repression within these cell lines result in unpredictable and unstable transgene expression following random integration. Limited knowledge of the CHO genome and its higher order chromatin organization has thus far impeded functional genomics approaches required to tackle these issues.
View Article and Find Full Text PDFGenome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T cells over 24 h, to identify functional enhancers regulating gene expression.
View Article and Find Full Text PDFIt is currently assumed that 3D chromosomal organization plays a central role in transcriptional control. However, depletion of cohesin and CTCF affects the steady-state levels of only a minority of transcripts. Here, we use high-resolution Capture Hi-C to interrogate the dynamics of chromosomal contacts of all annotated human gene promoters upon degradation of cohesin and CTCF.
View Article and Find Full Text PDFEukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin's chromatin residence time to minutes, it has been reported that some loops exist for hours.
View Article and Find Full Text PDF