Publications by authors named "Peter Forward"

Iron oxides and their hydroxides have been studied and analysed with properties of their mutual transformations under different hydrothermal conditions being indicated. Amorphous bacteria nanowires produced from biofilm waste were investigated under the influence of pH at a fixed duration (20 h) and reaction temperature (200 °C). The morphology, structure, and particle size of the transformation of hematite (α-FeO) was obtained and characterised with SEM, XRD, FTIR, and particle sizer.

View Article and Find Full Text PDF

pH stimuli responsive drug delivery platforms that can target specific locations along the gastrointestinal tract hold great promise for colorectal cancer therapy. Herein, we present a facile approach to produce microfluidic engineered pH-sensitive magnetic microspherical carriers containing multifunctional therapeutic payloads for synergistic treatment of colorectal cancer. Chemotherapeutics, 5 fluorouracil (5FU) and curcumin (CUR), were chosen due to their synergistic effect for colorectal cancer treatment and prevention.

View Article and Find Full Text PDF

Iron oxide nanowires produced by bacteria (Mariprofundus ferrooxydans) are demonstrated as new multifunctional drug carriers for triggered therapeutics release and cancer hyperthmia applications. Iron oxide nanowires are obtained from biofilm waste in the bore system used to pump saline groundwater into the River Murray, South Australia (Australia) and processed into individual nanowires with extensive magnetic properties. The drug carrier capabilities of these iron oxide nanowires (Bac-FeOxNWs) are assessed by loading anticancer drug (doxorubicin, Dox) followed by measuring its elution under sustained and triggered release conditions using alternating magnetic field (AMF).

View Article and Find Full Text PDF

Naturally produced iron oxide nanowires by Mariprofundus ferrooxydans bacteria as biofilm are evaluated for their structural, chemical, and photocatalytic performance under visible-light irradiation. The crystal phase structure of this unique natural material presents a 1-dimensional (1D) nanowire-like geometry, which is transformed from amorphous to crystalline (hematite) by thermal annealing at high temperature without changing their morphology. This study systematically assesses the effect of different annealing temperatures on the photocatalytic activity of iron oxide nanowires produced by Mariprofundus ferrooxydans bacteria.

View Article and Find Full Text PDF