NMD670 is a first-in-class inhibitor of skeletal muscle-specific chloride channel ClC-1, developed to improve muscle weakness and fatigue in neuromuscular diseases. Preclinical studies show that ClC-1 inhibition enhances muscle excitability, improving muscle contractility and strength. We describe the first-in-human, randomized, double-blind, placebo-controlled study, which evaluated the safety, pharmacokinetics, and pharmacodynamics of single and multiple doses of NMD670 in healthy male and female subjects.
View Article and Find Full Text PDFTreatment of rats with methylazoxymethanol (MAM) on gestational day (GD)17 disrupts corticolimbic development in the offspring (MAM-GD17 rats) and leads to abnormalities in adult MAM-GD17 rats resembling those described in schizophrenic patients. The underlying changes in specific cortical and limbic cell populations remain to be characterised. In schizophrenia, decreases in inhibitory gamma-aminobutyric acid (GABA)-containing interneurons that express the calcium-binding protein parvalbumin have been reported in the prefrontal cortex and hippocampus.
View Article and Find Full Text PDFLate gestational disruption of neurogenesis in rats has been shown to induce behavioral abnormalities thought to mimic aspects of positive and negative symptoms of schizophrenia. Furthermore, it has been shown that the morphological changes produced by the perturbation are relevant to schizophrenia with reduced thickness of the hippocampus, thalamus, and cortical regions. In addition to the positive and negative symptoms, schizophrenia is associated with deficits in a wide variety of cognitive domains.
View Article and Find Full Text PDFGestational disruption of neurodevelopment has been proposed to lead to pathophysiological changes similar to those underlying schizophrenia. We induced such disruption by treating pregnant rat dams with methylazoxymethanol acetate (MAM) on gestational day 17 (GD17). Total brain size and that of the prefrontal cortex and hippocampus were reduced in adult rats exposed prenatally to MAM.
View Article and Find Full Text PDF