The interface between the reinforcement and surrounding matrix in a fibrous composite is decisive and critical for maintaining component performance, durability, and mechanical structure properties for load coupling assessment, especially for highly flexible composite materials. The clear trend towards tailored solutions reveals that an in-depth knowledge on surface treating methods to enhance the fiber-matrix interfacial interaction and adhesion properties for an optimized load transfer needs to be ensured. This research aims to quantify the effect of several surface treatments for glass fibers applied in endless fiber-reinforced elastomers with pronounced high deformations.
View Article and Find Full Text PDFThe focus of this research is to quantify the effect of load-coupling mechanisms in anisotropic composites with distinct flexibility. In this context, the study aims to realize a novel testing device to investigate tension-twist coupling effects. This test setup includes a modified gripping system to handle composites with stiff fibers but hyperelastic elastomeric matrices.
View Article and Find Full Text PDFThe aim of this work was to analyze the influence of fibers on the mechanical behavior of fiber-reinforced elastomers under cyclic loading. Thus, the focus was on the characterization of structure-property interactions, in particular the dynamic mechanical and viscoelastic behavior. Endless twill-woven glass fibers were chosen as the reinforcement, along with silicone as the matrix material.
View Article and Find Full Text PDFThe focus of this paper is the realization and verification of a modified fiber bundle pull-out test setup to estimate the adhesion properties between threads and elastic matrix materials with a more realistic failure mode than single fiber debond techniques. This testing device including a modified specimen holder provides the basis for an adequate estimation of the interlaminar adhesion of fiber bundles including the opportunity of a faster, easier, and more economic handling compared to single fiber tests. The verification was done with the single-fiber and microbond test.
View Article and Find Full Text PDFFor the design of the next generation of microelectronic packages, thermal management is one of the key aspects and must be met by the development of polymers with enhanced thermal conductivity. While all polymer classes show a very low thermal conductivity, this shortcoming can be compensated for by the addition of fillers, yielding polymer-based composite materials with high thermal conductivity. The inorganic fillers, however, are often available only in submicron- and micron-scaled dimensions and, consequently, can sediment during the curing reaction of the polymer matrix.
View Article and Find Full Text PDF