Publications by authors named "Peter Eyer"

Article Synopsis
  • Hermann Tappeiner was appointed professor of medicinal chemistry and pharmacology in 1887, focusing on intestinal bacteria and digestion; he was succeeded by Walther Straub in 1923, who specialized in quantitative studies of alkaloids and contributing significantly to pharmacological literature.* -
  • Walther Straub played a key role in establishing the Deutsche Pharmakologische Gesellschaft and was instrumental in editing Naunyn-Schmiedeberg's Archives of Pharmacology; he retired in 1944 after the institute was damaged in air raids.* -
  • August Wilhelm Forst took over in 1946, leading the rebuilding efforts and creating an Insulin Control Laboratory; later, Manfred Kiese advanced research on biotransformation and developed
View Article and Find Full Text PDF

Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine.

View Article and Find Full Text PDF

Study Objective: Measurement of acetylcholinesterase (AChE) is recommended in the management of organophosphorus poisoning, which results in 200,000 deaths worldwide annually. The Test-mate ChE 400 is a portable field kit designed for detecting occupational organophosphorus exposure that measures RBC AChE and plasma cholinesterase (PChE) within 4 minutes. We evaluate Test-mate against a reference laboratory test in patients with acute organophosphorus self-poisoning.

View Article and Find Full Text PDF

Inhibition of acetylcholinesterase (AChE) is the main mechanism of action of organophosphorus compounds (OP), and AChE reactivators (oximes) are at present the only causal therapeutic approach. Being the key target of OP toxicity, AChE may serve as a valuable tool for diagnosis of OP exposure as well as for the investigation of the kinetics of interactions between OP and oximes. At present, the rapid, simple, and cheap spectrophotometric Ellman assay is widely used for diagnosis, therapeutic monitoring and in vitro kinetic investigations.

View Article and Find Full Text PDF

Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE.

View Article and Find Full Text PDF

Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals.

View Article and Find Full Text PDF

The standard treatment of poisoning by organophosphorus compounds (OP) includes the reversible muscarine receptor antagonist atropine and oximes for the reactivation of OP-inhibited acetylcholinesterase (AChE). There is an ongoing discussion on the benefit of oxime therapy in OP pesticide poisoning, and experimental data indicate a limited efficacy of oximes against various nerve agents. Oxime effectiveness can be quantified in vitro by determination of the reactivity (k(r)) and affinity constants (1/K(D)).

View Article and Find Full Text PDF

The therapy of organophosphorus compound (OP) poisoning is still a challenge to clinical toxicologists. To alleviate peripheral respiratory failure oximes, e.g.

View Article and Find Full Text PDF

There have been many animal studies on the effects of organophosphorus pesticide (OP) poisoning on thermoregulation with inconsistent results. There have been no prospective human studies. Our aim was to document the changes in body temperature with OP poisoning.

View Article and Find Full Text PDF

Standard treatment of acute poisoning by organophosphorus compounds (OP) includes administration of an antimuscarinic (e.g. atropine) and of an oxime-based reactivator of OP-inhibited acetylcholinesterase (AChE).

View Article and Find Full Text PDF

What Is Already Known About This Subject: * Acute alcohol intoxication often complicates acute organophosphorus pesticide poisoning. * No data are available on how alcohol intoxication affects outcome in acute organophosphorus pesticide poisoning. * In particular, the relationships between plasma alcohol concentration and plasma organophosphorus concentration or outcome are unclear.

View Article and Find Full Text PDF

Despite extensive research for more than six decades on medical countermeasures against poisoning by organophosphorus compounds (OP) the treatment options are meagre. The presently established acetylcholinesterase (AChE) reactivators (oximes), e.g.

View Article and Find Full Text PDF

It is generally accepted that inhibition of acetylcholinesterase (AChE) is the most important acute toxic action of organophosphorus compounds, leading to accumulation of acetylcholine followed by a dysfunction of cholinergic signaling. However, the degree of AChE inhibition is not uniformly correlated with cholinergic dysfunction, probably because the excess of essential AChE varies among tissues. Moreover, the cholinergic system shows remarkable plasticity, allowing modulations to compensate for dysfunctions of the canonical pathway.

View Article and Find Full Text PDF

Objective: The effects of obidoxime in the treatment of organophosphate poisoning were assessed by biochemical and biological effect monitoring. In this article we report effects on neuromuscular function, oxime and atropine concentration, and relate them to acetylcholinesterase (AChE) activity.

Methods: We measured the activity of cholinesterase in plasma and AChE in red blood cells (RBC) and related these data with neuromuscular transmission analysis (ulnar nerve stimulation).

View Article and Find Full Text PDF

Objective: The effects of obidoxime in the treatment of organophosphate poisoning were assessed by comparing the clinical course with its effects on laboratory parameters relevant to poisoning. In this article we report clinical findings and activity of cholinesterase in plasma and acetylcholinesterase (AChE) in red blood cells. In a linked paper we describe changes in neuromuscular transmission and atropine concentrations in the same patient cohort.

View Article and Find Full Text PDF

Background: Poisoning with organophosphorus (OP) insecticides is a major global public health problem, causing an estimated 200,000 deaths each year. Although the World Health Organization recommends use of pralidoxime, this antidote's effectiveness remains unclear. We aimed to determine whether the addition of pralidoxime chloride to atropine and supportive care offers benefit.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is a pesticide that causes tens of thousands of deaths per year worldwide. Chlorpyrifos oxon (CPO) is the active metabolite of CPF that inhibits acetylcholinesterase. However, this presumed metabolite has escaped detection in human samples by conventional methods (HPLC, GC-MS, LC-MS) until now.

View Article and Find Full Text PDF

Background: Propanil is an important cause of death from acute pesticide poisoning, of which methaemoglobinaemia is an important manifestation. However, there is limited information about the clinical toxicity and kinetics. The objective of this study is to describe the clinical outcomes and kinetics of propanil following acute intentional self-poisoning.

View Article and Find Full Text PDF

Introduction: Acute self-poisoning with the organophosphorus (OP) pesticide dimethoate has a human case fatality three-fold higher than poisoning with chlorpyrifos despite similar animal toxicity. The typical clinical presentation of severe dimethoate poisoning is quite distinct from that of chlorpyrifos and other OP pesticides: many patients present with hypotension that progresses to shock and death within 12-48 h post-ingestion. The pathophysiology of this syndrome is not clear.

View Article and Find Full Text PDF

Isodimethoate is a thermal decomposition product that is present in usual pesticide formulations of dimethoate. Owing to its PO structure the compound is a direct anticholinesterase agent whose properties, to the best of our knowledge, are presented here for the first time. Isodimethoate shows an inhibition rate constant towards human red blood cell acetylcholinesterase (AChE) of 2.

View Article and Find Full Text PDF

The efficacy of oxime treatment in soman poisoning is limited due to rapid aging of inhibited acetylcholinesterase (AChE). Pre-treatment with carbamates was shown to improve antidotal treatment substantially. Recently, by using a dynamically working in vitro model with real-time determination of membrane-bound AChE activity, we were able to demonstrate that pre-inhibition of human erythrocyte AChE with pyridostigmine or physostigmine resulted in a markedly higher residual AChE activity after inhibition by soman or paraoxon than in the absence of reversible inhibitors.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Peter Eyer"

  • - Peter Eyer's research primarily focuses on the pharmacological effects and treatment methodologies related to organophosphorus (OP) poisoning, highlighting the mechanisms of acetylcholinesterase (AChE) inhibition and the effectiveness of various oxime reactivators in clinical settings.
  • - His findings underscore the complexities of organophosphate toxicity, including significant interspecies variability in AChE reactivation and the inadequacies of current treatments, prompting further investigation into optimized therapeutic strategies.
  • - Eyer's work also extends to historical insights in pharmacology, notably the contributions of figures like Hermann Tappeiner and Walther Straub to the field, emphasizing the evolution of experimental pharmacology in Germany.