IEEE Trans Ultrason Ferroelectr Freq Control
June 2022
Coherent plane-wave compound imaging (CPWCI) is used as alternative for conventional focused imaging (CFI) to increase frame rates linearly with the ratio number of imaging lines to steering angles. In this study, the image quality was compared between CPWCI and CFI, and the effect of steering angles (range and number) and beamforming strategies was evaluated in CPWCI. In automated breast volume scanners (ABVSs), which suffer from reduced volume rates, CPWCI might be an excellent candidate to replace CFI.
View Article and Find Full Text PDFHyperion-II(D) is a positron emission tomography (PET) insert which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. To read out the scintillation light of the employed lutetium yttrium orthosilicate crystal arrays with a pitch of 1 mm and 12 mm in height, digital silicon photomultipliers (DPC 3200-22, Philips Digital Photon Counting) (DPC) are used. The basic PET performance in terms of energy resolution, coincidence resolution time (CRT) and sensitivity as a function of the operating parameters, such as the operating temperature, the applied overvoltage, activity and configuration parameters of the DPCs, has been evaluated at system level.
View Article and Find Full Text PDFWe evaluate the MR compatibility of the Hyperion-II(D) positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.
View Article and Find Full Text PDFIn modern positron emission tomography (PET) readout architectures, the position and energy estimation of scintillation events (singles) and the detection of coincident events (coincidences) are typically carried out on highly integrated, programmable printed circuit boards. The implementation of advanced singles and coincidence processing (SCP) algorithms for these architectures is often limited by the strict constraints of hardware-based data processing. In this paper, we present a software-based data acquisition and processing architecture (DAPA) that offers a high degree of flexibility for advanced SCP algorithms through relaxed real-time constraints and an easily extendible data processing framework.
View Article and Find Full Text PDFCombining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
January 2014
In this work, we present an initial MR-compatibility study performed with the world's first preclinical PET/MR insert based on fully digital silicon photo multipliers (dSiPM). The PET insert allows simultaneous data acquisition of both imaging modalities and thus enables the true potential of hybrid PET/MRI. Since the PET insert has the potential to interfere with all of the MRI's subsystems (strong magnet, gradients system, radio frequency (RF) system) and vice versa, interference studies on both imaging systems are of great importance to ensure an undisturbed operation.
View Article and Find Full Text PDF