Although most acute skin wounds heal rapidly, non-healing skin ulcers represent an increasing and substantial unmet medical need that urgently requires effective therapeutics. Keratinocytes resurface wounds to re-establish the epidermal barrier by transitioning to an activated, migratory state, but this ability is lost in dysfunctional chronic wounds. Small-molecule regulators of keratinocyte plasticity with the potential to reverse keratinocyte malfunction in situ could offer a novel therapeutic approach in skin wound healing.
View Article and Find Full Text PDFProtein phosphorylation by kinases is of critical importance for the regulation of many cellular functions. When kinases are deregulated numerous biological processes are affected, which may cause a variety of diseases. Therefore, kinase inhibition plays an important role for therapeutic intervention.
View Article and Find Full Text PDFChronic myelogenous leukemia (CML) arises from the constitutive activity of the BCR-ABL1 oncoprotein. Tyrosine kinase inhibitors (TKIs) that target the ATP-binding site have transformed CML into a chronic manageable disease. However, some patients develop drug resistance due to ATP-site mutations impeding drug binding.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
Biochemical selectivity profiling is an integral part of early drug development. Typically compounds from optimization phase are regularly tested for off-target activities within or across target families. This article presents workflow and critical aspects of biochemical protein kinase profiling based on microfluidic mobility shift assays.
View Article and Find Full Text PDFKinases can switch between active and inactive conformations of the ATP/Mg(2+) binding motif DFG, which has been explored for the development of type I or type II inhibitors. However, factors modulating DFG conformations remain poorly understood. We chose CDK2 as a model system to study the DFG in-out transition on a target that was thought to have an inaccessible DFG-out conformation.
View Article and Find Full Text PDFPurpose: PIM kinases have been shown to act as oncogenes in mice, with each family member being able to drive progression of hematologic cancers. Consistent with this, we found that PIMs are highly expressed in human hematologic cancers and show that each isoform has a distinct expression pattern among disease subtypes. This suggests that inhibitors of all three PIMs would be effective in treating multiple hematologic malignancies.
View Article and Find Full Text PDFProtein kinases are widely recognized as important therapeutic targets due to their involvement in signal transduction pathways. These pathways are tightly controlled and regulated, notably by the ability of kinases to selectively phosphorylate a defined set of substrates. A wide variety of disorders can arise as a consequence of abnormal kinase-mediated phosphorylation and numerous kinase inhibitors have earned their place as key components of the modern pharmacopeia.
View Article and Find Full Text PDFProtein kinases are widely recognized as important therapeutic targets due to their involvement in signal transduction pathways. These pathways are tightly controlled and regulated, notably by the ability of kinases to selectively phosphorylate a defined set of substrates. As part of a study on the substrate requirements of Insulin-like Growth Factor 1 Receptor (IGF-1R) and Insulin Receptor (InsR), we evaluated and applied a universal assay system able to monitor the phosphorylation of unlabelled peptides of any length in real time.
View Article and Find Full Text PDFA novel series of N-aryl-N'-pyrimidin-4-yl ureas has been optimized to afford potent and selective inhibitors of the fibroblast growth factor receptor tyrosine kinases 1, 2, and 3 by rationally designing the substitution pattern of the aryl ring. On the basis of its in vitro profile, compound 1h (NVP-BGJ398) was selected for in vivo evaluation and showed significant antitumor activity in RT112 bladder cancer xenografts models overexpressing wild-type FGFR3. These results support the potential therapeutic use of 1h as a new anticancer agent.
View Article and Find Full Text PDFThe emergence of drug resistance is a primary concern in any cancer treatment, including with targeted kinase inhibitors as exemplified by the appearance of Bcr-Abl point mutations in chronic myeloid leukemia (CML) patients treated with imatinib. In vitro approaches to identify resistance mutations in Bcr-Abl have yielded mutation spectra that faithfully recapitulated clinical observations. To predict resistance mutations in the receptor tyrosine kinase MET that could emerge during inhibitor treatment in patients, we conducted a resistance screen in BaF3 TPR-MET cells using the novel selective MET inhibitor NVP-BVU972.
View Article and Find Full Text PDFThe natural product L-783277 is a resorcylic lactone type covalent kinase inhibitor. We have prepared the 5'-deoxy analogue of L-783277 (1) in a stereoselective fashion. Remarkably, this analogue retains almost the full kinase inhibitory potential of natural L-783277, with low nanomolar IC50 values against the most sensitive kinases, and it exhibits essentially the same selectivity profile (within the panel of 39 kinases investigated).
View Article and Find Full Text PDFWe present a novel homogeneous in vitro assay format and apply it to the quantitative determination of the enzymatic activity of a tyrosine kinase. The assay employs a short peptidic substrate containing a single tyrosine and a single probe attached via a cysteine side chain. The structural flexibility of the peptide allows for the dynamic quenching of the probe by the nonphosphorylated tyrosine side chain.
View Article and Find Full Text PDFThe recent discovery of an acquired activating point mutation in JAK2, substituting valine at amino acid position 617 for phenylalanine, has greatly improved our understanding of the molecular mechanism underlying chronic myeloproliferative neoplasms. Strikingly, the JAK2(V617F) mutation is found in nearly all patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia and primary myelofibrosis. Thus, JAK2 represents a promising target for the treatment of myeloproliferative neoplasms and considerable efforts are ongoing to discover and develop inhibitors of the kinase.
View Article and Find Full Text PDFWe have designed and synthesized a novel series of 2,8-diaryl-quinoxalines as Janus kinase 2 inhibitors. Many of the inhibitors show low nanomolar activity against JAK2 and potently suppress proliferation of SET-2 cells in vitro. In addition, compounds from this series have favorable rat pharmacokinetic properties suitable for in vivo efficacy evaluation.
View Article and Find Full Text PDFA series of novel benzoxazole derivatives has been designed and shown to exhibit attractive JAK2 inhibitory profiles in biochemical and cellular assays, capable of delivering compounds with favorable PK properties in rats. Synthesis and structure-activity relationship data are also provided.
View Article and Find Full Text PDFAs a drug used to treat imatinib-resistant and -intolerant, chronic and advanced phase chronic myelogenous leukaemia, nilotinib is well characterised as a potent inhibitor of the Abl tyrosine kinase activity of wild-type and imatinib-resistant mutant forms of BCR-Abl. Here we review the profile of nilotinib as a protein kinase inhibitor. Although an ATP-competitive inhibitor of Abl, nilotinib binds to a catalytically inactive conformation (DFG-out) of the activation loop.
View Article and Find Full Text PDFProtein kinases have emerged as a major drug target in the last years. Since more than 500 kinases are encoded in the human genome, cross-reactivity of a majority of kinase inhibitors causes problems. Tools are required for a rapid classification of inhibitors according to their affinity for a certain target to refine the search for new, more specific lead compounds.
View Article and Find Full Text PDFBackground: Resistance to imatinib is an important clinical issue in the treatment of Philadelphia chromosome-positive leukemias which is being tackled by the development of new, more potent drugs, such as the dual Src/Abl tyrosine kinase inhibitors dasatinib and bosutinib and the imatinib analog nilotinib. In the current study we describe the design, synthesis and biological properties of an imatinib analog with a chlorine-substituted benzamide, namely compound 584 (cmp-584).
Design And Methods: To increase the potency, we rationally designed cmp-584, a compound with enhanced shape complementarity with the kinase domain of Abl.